
29th International Symposium on Temporal Representation and Reasoning

TIME 2022, October 7-9,2022

Gabbay Separation for the Duration Calculus
a sequel paper of

A Separation Theorem for Discrete Time Interval Temporal Logic

JANCL, 2022, joint with Ben Moszkowski

Dimitar P. Guelev

http://www.math.bas.bg/~gelevdp

1



Plan of Talk

Introduction: LTL with Past and Gabbay’s theorem

Preliminaries on Interval Temporal Logic (ITL, Moszkowski, Moszkowski et al,

1983-)

ITL with 〈A〉, 〈A〉, also written 3l, 3r in DC

The Separation Theorem in ITL [Guelev and Moszkowski, JANCL 2022]

DC and the relevant classes of formulas: (strictly) past and (strictly) future.

Key part of the proof (for both ITL and DC.)

Questions

2



The Grand Prototype:

Separation in LTL with Past (PLTL) [Gabbay, 1989]

Set of atomic propositions AP . An interval I ⊆ Z; σ : I → P(AP ), i ∈ I.

A ::= true | p︸︷︷︸
∈AP

| ¬A | A ∨A | ©A | A UA︸ ︷︷ ︸
not allowed

in past formulas

| −©A | A SA︸ ︷︷ ︸
not allowed

in future formulas

σ, i |= ©A iff σ, i+ 1 |= A, σ, i |= −©A iff σ, i− 1 |= A

σ, i |= A UB iff ∃k(σ, i+ k |= B ∧
k−1∧
j=0

σ, i+ j |= A)

σ, i |= A SB iff ∃k(σ, i− k |= B ∧
0∧

j=−k+1

σ, i+ j |= A)

3−A =̂ true SA; Strictly future (past) formulas: ©F (−©P ).

Theorem 1 (Gabbay, 1989) Every LTL formula is equivalent to a BC of

past formulas, strictly future formulas and atomic propositions.

3



An Example Generic Application to Synthesis

Any separated A is equivalent to a boolean combination of past and future

formulas in conjunctive normal form. Let

A =̂
∧
k

(Pk,1 ∨ · · · ∨ Pk,nk︸ ︷︷ ︸
=̂Pk,past

∨©Fk,1 ∨ · · · ∨©Fk,mk︸ ︷︷ ︸
=̂ ©Fk,future

)

Then |= A ≡
∧
k

¬Pk ⊃ ©Fk, ’If ¬Pk is observed, then Fk is forthcoming’.

I =̂¬−©true,

Consider 23−(I ∧B); let A =̂3−(I ∧B)

Then: |= 23−(I ∧B) ≡
∧
k

2(¬Pk ⊃ ©Fk)

4



ITL

A vocabulary is a set of atomic propositions V .

Semantics

σ =̂σ0σ1 . . . ∈ P(V )+ ∪ P(V )ω have been dubbed intervals,

These are sequences [0, ..., |σ|]→ P(V ), like (not necessaryly infinite) LTL

traces.

Unlike σ, i |=PLTL . . ., we have σ |=ITL . . ..

However, accommodating expanding modalities takes first moving to

σ, i, j |=ITL . . . , i < j, i, j ∈ domσ

where σ : I → P(V ), I ⊆ Z - an interval.

5



|= for A ::= false | p | A ⊃ A | ©A | A;A | A∗ , p ∈ V

σ |= p iff p ∈ σ0

next σ |= ©A iff |σ| ≥ 1 and σ1↑ |= A

chop σ |= A;B iff for some k ≤ |σ|, k < ω, σ0..k |= A and σk↑ |= B

chop-star σ |= A∗ iff either |σ| = 0,

or there exists a finite sequence

k0 = 0 < k1 < . . . < kn ≤ |σ|, kn < ω

such that σki..ki+1 |= A for i = 0, . . . , n− 1, and σkn↑ |=A,

or |σ| = ω and there exists an infinite sequence

k0 = 0 < k1 < . . . such that σki..ki+1 |= A for all i < ω.

σ, i, j |= A generalizes σi..j |= A for the ‘core’ ITL operators.

(σ0σ1 . . .)b..e =̂σb . . . σe, if 0 ≤ b ≤ e ≤ |σ|; (σ0σ1 . . .)k↑ =̂ (σkσk+1 . . .), if k ≤ |σ|.

6



The Neighbourhood Modalities 3l, 3r, AKA 〈A〉 and 〈A〉

σ, i, j |= 3lA iff i > −∞ and there exists a k ≤ i such that σ, k, i |= A

σ, i, j |= 3rA iff j <∞ and there exists a k ≥ j such that σ, j, k |= A

7



The Separation Theorem in ITL with 3l and 3r

Introspective formulas C: - ‘core’ ITL (just chop and possibly chop-star)

Past formulas: P ::= C | ¬P | P ∨ P | 3lP

Past = no 3r, and no 3l in the scope of chop or chop-star.

Strictly past formulas: 3l(P ; skip)

skip =̂ ©¬© true provides that the P -interval and the reference interval are

apart.

Future formulas (3r instead of 3l): F ::= C | ¬F | F ∨ F | 3rF .

Stricty future formulas: 3r(skip;F ) where F is future.

Theorem 2 (separation for ITL, Guelev and Moszkowski, JANCL 2022)

Every ITL formula is equivalent to a boolean combination of strictly past

formulas, strictly future formulas and introspective formulas.

(!) The point-based prototype’s p-s become interval C-s.

8



The Theorem Applies to the Weak Binary Chop Inverses

σ, i, j |= A/B iff for all k ≥ j, if σ, j, k |= B then σ, i, k |= A.

σ, i, j |= A\B iff for all k ≤ i, if σ, k, i |= B then σ, k, j |= A.

Interestingly, some of the technique for proving separation helps establishing:

ITL +3r = ITL + (./.); ITL +3l = ITL + (.\.)

Past chop, signed chop, embedding all reasoning in formulas that are evaluated

at infinite intervals.

9



The Prototype’s Applications

These, I believe, can be ported from the LTL case; that automatically leads to

stronger results, given the greater expressive power of ITL.

Separation at Work in Branching Time Logics with Past

The key observation looks next to trivial but saves a lot of hassle:

σ, i |= ∃A iff a σ′ exists (in the model) s.t. σ′|{...,i} = σ|{...,i} and σ, i |= A

Now, A may be imposing restrictions on both σ|{...,i} and σ|{i,...}.

If, e.g. |= A ≡ P ∧ F , then |= ∃(P ∧ F ) ≡ P ∧ ∃F .

Hence restricting to only F s in the scope of ∃ WL of expressiveness.

∃ is CTL∗’s branching time construct; other BT constructs admit the same

transformations.

The same applies to branching time systems that have an interval-based set of

(linear time) connectives. Cf. e.g. Cong Tian and Zhenhua Duan’s

Interval-based ATL [ICFEM 2010]. Enter interval-based separation!

10



The dP e-subset of DC

Vocabulary: sets V of state variables P , Q, . . .

Models: I : V × R→ {0, 1}

Finite Variability: For every P ∈ V and every [a, b] ⊂ R there exists a finite

sequence t0 = a < t1 < . . . < tn = b such that λt.I(P, t) is constant in

(ti−1, ti), i = 1, . . . , n.

Syntax: state expressions S and formulas A:

S ::= 0 | P | S ⇒ S

A ::= false | de | dSe | A⇒ A | A;A

11



Semantics: It(S) and I, [a, b] |= A

S ::= 0 | P | S ⇒ S A ::= false | de | dSe | A⇒ A | A;A

It(0) =̂ 0, It(P ) =̂ I(P, t), It(S1 ⇒ S2) =̂ max{It(S2), 1− It(S1)}.

I, [a, b] 6|= false, I, [a, b] |= de iff a = b

I, [a, b] |= dSe iff a < b and {t ∈ [a, b] : It(S) = 0} is finite

I, [a, b] |= A⇒ B iff I, [a, b] |= B or I, [a, b] 6|= A

I, [a, b] |= A;B iff I, [a,m] |= A and I, [m, b] |= B for some m ∈ [a, b]

Abbreviations: >, ¬, ∧, ∨ and ⇔ are defined as usual.

1 =̂0⇒ 0 3A =̂>;A;> 2A =̂¬3¬A . . .

A;B is written A_B in much of the literature on DC.

Validity: |= A, if I, [a, b] |= A for all I and all intervals [a, b].

12



The Defining Clauses for 3l and 3r Are the Same

I, [a, b] |= 3lA iff I, [a′, a] |= A for some a′ ≤ a,

I, [a, b] |= 3rA iff I, [b, b′] |= A for some b′ ≥ b.

In 3l and 3r, l and r stand for left (past) and right (future), respectively.

DC-NL =̂DC +3l +3r.

13



Iteration: DC’s chop-based Form of Kleene Star is the

Natural Counterpart of chop-star Too

I, [a, b] |= A∗ iff a = b or there exists a finite sequence

m0 = a < m2 < · · · < mn = b such that

I, [mi−1,mi] |= A for i = 1, . . . , n.

Positive iteration A+ and iteration are interdefinable:

A+ =̂A; (A∗), |= A∗ ⇔ de ∨A+.

DC∗ =̂DC + iteration.

DC-NL∗ =̂DC +3l +3r + iteration.

14



Separation in DC-NL and DC-NL∗

DC-NL (resp. DC-NL∗) introspective, future and past formulas are like in ITL:

C ::= false | de | dSe | C ⇒ C | C;C | C∗

P ::= C | ¬P | P ∨ P | 3lP, F ::= C | ¬F | F ∨ F | 3rF.

Strict Forms of Future and Past Formulas Are DC-Specific

A strictly past (strictly future) formula is a boolean combination of 3l (3r)

formulas whose operands are non-strictly past (non-strictly future):

SP ::= 3lP | SP ⇒ SP SF ::= 3lF | SF ⇒ SF

dSe is not affected by varying It(S) at single time instants, such as the

midpoint in DC’s chop. Given I : V × R→ {0, 1},

I, [a, b] |= C is a condition on IV×[a,b].

I, [a, b] |= SF is a condition on I|V×[b,+∞)

I, [a, b] |= SP is a condition on I|V×(−∞,a]

15



The Separation Theorem for DC-NL and DC-NL∗

A separated formula A is a boolean combination of strictly past, strictly future

and introspective formulas:

A ::= C | SP | SF | A⇒ A

In separated formulas,

3l is not allowed in the scope of chop, iteration and 3r;

3r is not allowed in the scope of chop, iteration and 3l.

Theorem: Every formula in the dP e-subset of DC-NL (DC-NL∗) is equivalent

to a separated formula in the dP e-subset of DC-NL (DC-NL∗).

16



The Companion Result: Expressive Completeness

[Rabinovich, LICS 2000]

The LTL prototype is known to be related with expressive completeness.

The same subset of DC was proven expressive complete by Rabinovich wrt a

corresponding monadic second order theory. (LTL’s is first order.)

In principle, a proof of separation using expressive completeness is doable in

this setting.

Such a proof seems to be no less trivial than the one on the example of the

discrete time ITL proof. It may as well be publishable. . .

17



The Proof: A collection of valid equivalences to apply as

transformation rules!

Two collections of equivalences:

for the particular cases of extracting 3l, 3r from the scope of other

operators, and

for a transformation that recurs in the them:

A1, . . . , An is a full system, if |=
n∨

k=1

Ak and |= ¬(Ak1 ∧Ak2) for k1 6= k2.

The Key Lemma. Let A be a dP e-formula in DC (DC∗). Then there exists

an n < ω and some DC (DC∗) dP e-formulas Ak, A
′
k, k = 1, . . . , n, such that

A1, . . . , An is a full system and

(1) |= A⇔
n∨

k=1

Ak;A
′
k and |= A⇔

n∧
k=1

¬(Ak;¬A′k).

Let h∗(A) be the ∗-height of A. Then, furthermore, h∗(Ak) ≤ h∗(A) and

h∗(A
′
k) ≤ h∗(A).

18



Proof of the Key Lemma

|= ⊥ ⇔ (>;⊥) |= de ⇔ (de; de) ∨ (¬de;⊥)

|= dP e ⇔ (dP e; (dP e ∨ de)) ∨ (de; dP e) ∨ (¬(de ∨ dP e);⊥)

Let B1, . . . , Bn, B′1, . . . , B
′
n, C1, . . . , Cm, C ′1, . . . , C

′
m satisfy (1) for B and C,

respectively. Then:

|= B op C ⇔
n∨

k=1

m∨
l=1

(Bk ∧ Cl); (B
′
k op C

′
l), op ∈ {⇒,∨,∧,⇔}

|= B;C ⇔
∨

k=1,...,n
X⊆{1,...,m}

(
Bk ∧

∧
l∈X

(B;Cl) ∧
∧
l 6∈X
¬(B;Cl)

)
;

(
(B′k;C) ∨

∨
l∈X

C ′l

)
For the equivalence about iteration, let C1, . . . , Cm, and C ′1, . . . , C

′
m satisfy

(1) for C =̂B ∨ de. Then B∗ ⇔ C∗, and:

|= B∗ ⇔
∨

X⊆{1,...,m}

( ∧
l∈X

(B∗;Cl) ∧
∧
l 6∈X
¬(B∗;Cl)

)
;

( ∨
l∈X

(C ′l ;B
∗)

)
19



Mirror Statements

All the technicalities in the proof come in pairs: along with every statement, its

time mirror holds too.

The validity of the time mirrors of valid statements follows from the time

symmetry in the semantics of chop, iteration, 3l and 3r.

Mirror statements are obtained by

exchanging the operands of chop;

replacing 3l by 3r and vice versa.

E.g., the mirror statement of the Key Lemma is

Mirror Key Lemma. Let A be a dP e-formula in DC (DC∗). Then there

exists an n < ω and some DC (DC∗) dP e-formulas Ak, A
′
k, k = 1, . . . , n, such

that A1, . . . , An is a full system and

|= A⇔
n∨

k=1

A′k;Ak and |= A⇔
n∧

k=1

¬(¬A′k;Ak).

20



Separating 3l-formulas

Consider 3lA, where A is already separated.

A can be assumed to be in DNF.

Since

|= 3l(A1 ∨A2)⇔ 3lA1 ∨3lA2,

A can be assumed to be a conjunction of possibly negated non-strictly past

formulas P and strictly future formulas εk3rFk. We have

|= 3l

(
P ∧

n∧
k=1

εk3rFk

)
⇔ 3lP ∧

n∧
k=1

((de ∧ εk3rFk);>) .

Hence separating 3lA boils down to separating the chop formulas

((de ∧ ε3rFk);>).

21



Separating chop-formulas

Again, since |= (L1 ∨ L2);R⇔ (L1;R) ∨ (L2;R) and

|= L; (R1 ∨R2)⇔ (L;R1) ∨ (L;R2),

we need to do only conjunctions of introspective formulas and possibly negated

past 3l-formulas or future 3r-formulas.

Past 3l-formulas (future 3r-formulas) can be extracted from the left (right)

operand of chop using

|= (L ∧ ε3lP );R⇔ (L;R) ∧ ε3lP and |= L; (R ∧ ε3rF )⇔ (L;R) ∧ ε3rF.

It remains to do (L ∧
n∧

k=1

εk3rFk);R.

The mirror transformations work for P ; (R ∧
n∧

k=1

εk3lPk).

22



Separating (P ∧
n∧

k=1

εk3rFk);R

Consider (L ∧ ε3rF );R where ε3rF =̂ ε13rF1 and L =̂P ∧
n∧

k=2

εk3rFk.

Again F of ε3rF can be assumed to be a conjunct (of a DNF).

Let F be C ∧G where C is introspective and G is strictly future.

Let Ck, C
′
k, k = 1, . . . , n, satisfy the Key Lemma for C. Then

|= (L ∧3r(C ∧G︸ ︷︷ ︸
=F

));R⇔ (L; (R ∧ (C ∧G︸ ︷︷ ︸
=F

; true))) ∨
n∨

k=1

(L; (R ∧ Ck)) ∧3r(C
′
k ∧G)

|= (L ∧ ¬3r(C ∧G︸ ︷︷ ︸
=F

));R⇔
n∨

k=1

(L; (R ∧ Ck ∧ ¬((C ∧G︸ ︷︷ ︸
=F

); true))) ∧ ¬3r(C
′
k ∧G).

To finish the separation, the blue occurrences of G must be extracted from

the scope of chop. This is possible because G’s 3r-height is lower than F ’s.

23



Separating iteration formulas in DC-NL∗

Separating iteration formulas in DC-NL∗ can be done using

(1) quantification over state in DC

and

(2) the fact that quantification over state can be eliminated in the dP e-subset

of DC.

I, [a, b] |= ∃P A iff I ′, [a, b] |= A for some I ′ such that I ′(Q, t) = I(Q, t) and

all Q ∈ V \ {P}, t ∈ R.

Quantification over state is expressible in the dP e-subset of DC∗:

Theorem: For every dP e-formula A in DC∗ and every state variable P there

exists a (quantifier-free) dP e-formula B in DC∗ such that |= B ⇔ ∃P A.

Importantly, B is not guaranteed to be iteration-free, even in case A is.

However introducing fresh occurrences of iteration upon quantifier elimination

is used if iteration already occurs in the formula to be separated.

24



Extracting 3l- and 3r-formulas from the scope of iteration

Let B of B∗ be
t∨

s=1
Bs where Bs =̂Hs ∧

u∧
i=1

εps,i3lPi ∧
v∧

j=1

εfs,j3rFj .

Then B∗ is equivalent to

∃T∃Sp
1 . . . S

p
u∃Sf

1 . . . S
f
v

(
(dT e; d¬T e) ∧

t∨
s=1

(
Bs ∧

u∧
i=1

dεps,iS
p
i e ∧

v∧
j=1

dεfs,jS
f
j e
))∗

The satisfying assignment of T, Sp
1 , . . . , S

p
u, S

f
1 , . . . , S

f
v is such that

(1) the left endpoints of the maximal T ∧ εps,iS
p
i -subintervals are the left

endpoints of the intervals which must satisfy εps,i3lPi for Bs to hold,

and

(2) the right endpoints of the maximal ¬T ∧ εfs,jS
f
j -subintervals are the right

endpoints of the intervals which must satisfy εfs,i3rFj for Bs to hold.

25



Separating iteration formulas in DC-NL∗

The correspondence between the assignments of 3rFj , and T and Sf
j can be

expressed by the formulas

ϕj =̂

 (true; dSf
j
e) ⇒ 3rFj ∧ ¬((true; dS

f
j
∧ ¬Te); ((dTe; true) ∧ ¬((3rFj ∧ de); true)))∧

(true; d¬Sf
j
e) ⇒ ¬3rFj ∧ ¬((true; d¬S

f
j
∧ ¬Te); ((dTe; true) ∧ ((3rFj ∧ de); true)))



and their past mirrors πi, for the correspondence between 3lFi, and T and Sp
i .

Hence B∗ is equivalent to

∃T∃Sp1 . . . ∃S
p
u∃S

f
1 . . . ∃S

f
v


(
(dTe; d¬Te) ∧

t∨
s=1

Hs ∧
u∧
i=1
dεp
s,i
S
p
i
e ∧

v∧
j=1
dεf
s,j

S
f
j
e
)∗

∧
u∧
i=1

πi ∧
v∧
j=1

ϕj

 .

The separation procedure can now be concluded by

– separating πi and ϕj ;

– taking the 3l- and the 3r-subformulas of the separated equivalents of πi
and ϕj out of the scope of the quantifier prefix;

– eliminating the quantifier prefix from the remaining introspective formula.

26



The End

27


