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Introduction

Artificial Intelligence

Machine Learning
Knowledge extraction from data

Functional Learning
Models ≡ mathematical functions

• Linear Regression

• k-Nearest Neighbors

• Neural Networks

Symbolic Learning
Models ≡ formulas of logical languages

• Inductive Logic Programming

• Rule-Based Modeling

• Decision Trees

+ good with complex data

+ generalization power

+ good with small datasets

+ transparency
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Machine Learning: An Example

Dataset
ML

Algorithm
ML

Model

By means of a machine learning algorithm, a model can be trained from a dataset. The
model can then, be used for prediction on new data:

New
data

instance

ML
Model Outcome

Hospitalization context where patients are instances described by their age, weight and
gender. Data are normally collected in tabular form:

# Instance Age Weight Gender Class label
1 37 70 M SICK
2 49 81 M HEALTHY
3 20 55 F SICK

. . . . . . . . . . . . . . .
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Neural Networks vs. Decision Trees for classification
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Features:

• fluid information flow

• black-box behaviour

Training algorithm:

• fix structure

• initialize parameters randomly

• iteratively optimize until certain conditions are met
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Features:

• compact information flow

• transparent logical reasoning

Training algorithm:

• initialize root node as leaf

• find best splitting condition

• split dataset and recurse on children until
certain conditions are met
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Neuro-Symbolic strategies

• DT → NN [Sethi 1990, Brent 1991, Ivanova & Kubat 1995, Setiono & Leow 2000]

• Train a DT
• Map it to a NN
• Optimize the NN

+ performance
• NN → DT [Towell & Shavlik 1993, Craven & Shavlik 1995, Krishnan et al. 1999, Zhou and Jiang 2004]

• Train a NN
• Map it to a DT
• Prune the DT

+ transparency

• Define a hybrid NN/DT model and a learning algorithm for it
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Neuro-Symbolic strategies: NN/DT Hybrids
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• leaf-level hybrid: logical reasoning + more specific neural reasoning

• root-level hybrid: neural reasoning + more specific logical reasoning

• split-level hybrid: mixed reasoning (and it still provides some form of explanation).
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Multivariate Time Series Classification (MTSC)

Static Dataset

Age Weight Gender Class label
37 70 M SICK
49 81 M HEALTHY
20 55 F SICK
. . . . . . . . . . . .

Temporal Dataset

BP,HR Class Label

SICK

HEALTHY

.

.

.

.

.

.

SICK

• A multivariate time series is a set of variables that evolve through time;

• Multivariate Time Series Classification (MTSC) is an important ML task;

• Traditional, static decision trees can solve MTSC tasks in a limited way;

• Interval temporal decision trees can solve MTSC tasks with temporal reasoning.
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Static Decision Trees for MTSC

A temporal dataset T = {T1, . . . , Tm} is a finite collection of temporal instances, each
consisting of a N-point time series of n temporal variables V = {V1, . . . ,Vn}, and associated
with a class label from a set of classes C = {C1, . . . ,Ck}.

Static decision trees encompass a set of split decisions, which is equal to the alphabet P:

S = P = {f (V) ⊲⊳ v | V ∈ V, v ∈ dom(f )},

where f is a scalar feature function, and ⊲⊳ ∈ {≤, =,≠, >}.

Static decision trees are formulas of the following grammar, where S ∈ S and C ∈ C:

𝜏 ::= (S ∧ 𝜏) ∨ (¬S ∧ 𝜏) | C.
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Temporal Decision Trees for MTSC

The key idea behind interval temporal decision trees is that the temporal dimension can be
handled by using a temporal modal logic based on intervals (HS, originally presented by J.
Halpern and Y. Shoham). HS formulas are defined by the following grammar:

𝜑 ::= p | ¬𝜑 | 𝜑 ∨ 𝜑 | 〈X〉𝜑,

where p ∈ P is an atomic proposition, and X ∈ {A, L,B,E,D,O,A, L,B,E,D,O} is one of
the 12 binary interval relations (J.F. Allen, 1983).

Table 1: Six Allen’s interval relations. Other six relations can be defined as their inverses.

HS modality Definition w.r.t. interval structure Example

x y

z t

z t

z t

z t

z t

z t

〈A〉 (after) [x, y]RA [z, t] ⇔ y = z

〈L〉 (later) [x, y]RL [z, t] ⇔ y < z

〈B〉 (begins) [x, y]RB [z, t] ⇔ x = z ∧ t < y

〈E〉 (ends) [x, y]RE [z, t] ⇔ y = t ∧ x < z

〈D〉 (during) [x, y]RD [z, t] ⇔ x < z ∧ t < y

〈O〉 (overlaps) [x, y]RO [z, t] ⇔ x < z < y < t
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Interval Temporal Decision Trees for MTSC

Unlike the static case, propositions are relativized to intervals of the series, and their
decisions may ask whether there exists an interval, with respect to the current one, with the
given propositional property.

Thus, the language of temporal decision trees encompasses a set of temporal split ecisions:

S = {f (V) ⊲⊳ v | V ∈ V, v ∈ dom(f )} ∪
{〈X〉(f (V) ⊲⊳ v) | X ∈ X,V ∈ V, v ∈ dom(f )},

where X = {A, L,B,E,D,O,A, L,B,E,D,O} are interval operators of HS.
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Static vs. Temporal Decision Trees
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Autoencoders (as feature extractors)

〈X〉(f (V) ⊲⊳ v)

Input
layer

Output
layer

Autoencoder schema:

• Train a network to reproduce its input (i.e., learn the identity function);
• Introduce an information bottleneck;
• As a result, the prefix of the network (encoder) is forced to produce a succint

representation of the input.
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Temporal autoencoders (as feature extractors)

With time series data, sequence-to-sequence and transformer models are commonly used.
Note that they allow inputs of varying lengths.

the blue house <eos>

la casa azul <eos>

Figure 1: Example of a sequence-to-sequence model used for natural language translation.
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Experiments: Datasets

Experiments in a cross-validation setting were done on three benchmark datasets for MTSC:

Dataset # train+test instances # points (N) # variables (n) # classes (k)
Libras 180 + 180 = 360 45 2 15

NATOPS 180 + 180 = 360 51 24 6
RacketSports 151 + 152 = 303 30 6 4

For each dataset, six approaches were compared:

• Static DT with min and max;

• Temporal DT with min and max;

• Static DT with neural features;

• Temporal DT with neural features;

• Static DT with neural features, min and max;

• Temporal DT with neural features, min and max.
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Experiments: Statistical Results

Table 2: Average results (metrics are shown in percentage points).

𝜅 coeff. accuracy F1 time (s)

Li
br

as

D
T

min, max 35.4 39.7 39.3 0.1
neural 19.0 24.4 23.8 0.1

min, max, neural 40.9 44.8 44.2 0.1

TD
T

min, max 54.6 57.6 57.2 6.3
neural 54.5 57.5 56.7 18.0

min, max, neural 55.2 58.2 57.6 30.7
N

A
TO

PS D
T

min, max 65.1 70.9 70.8 0.7
neural 42.8 52.3 52.1 0.6

min, max, neural 65.7 71.5 71.4 1.0

TD
T

min, max 84.0 86.7 86.7 37.0
neural 87.1 89.2 89.3 118.3

min, max, neural 86.7 88.9 89.0 252.1

R
ac

ke
tS

po
rts D
T

min, max 55.4 66.6 67.4 0.2
neural 44.2 58.4 59.2 0.2

min, max, neural 57.5 68.2 69.3 0.3

TD
T

min, max 55.0 66.3 67.5 1.1
neural 56.0 67.1 68.1 2.7

min, max, neural 56.3 67.3 68.3 5.5

The best approach for each dataset involves neural features.
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Experiments: Statistical Results

Table 3: Per-class recall in percentage points.

Libras
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 AA

D
T

min, max 29 41 26 45 53 38 34 39 88 28 38 38 36 16 48 40
neural 17 12 13 46 38 22 34 8 30 14 28 32 19 22 30 24

min, max, neural 35 57 25 59 53 31 42 50 87 36 41 43 44 28 42 45

TD
T

min, max 48 77 49 70 70 49 64 55 88 42 55 51 41 58 48 58
neural 59 76 42 68 59 56 62 58 88 35 52 60 50 50 47 58

min, max, neural 56 78 46 72 69 51 62 55 86 39 54 53 53 52 47 58

NATOPS
1 2 3 4 5 6 AA

D
T

min, max 91 77 65 52 51 90 71
neural 48 45 40 60 52 69 52

min, max, neural 91 73 64 57 53 90 72

TD
T

min, max 93 87 68 90 90 92 87
neural 95 88 70 91 94 92 89

min, max, neural 95 87 67 91 94 94 89

RacketSports
1 2 3 4 AA

D
T

min, max 50 55 83 84 68
neural 54 36 85 64 60

min, max, neural 55 52 88 85 70

TD
T

min, max 51 54 80 85 68
neural 60 49 77 87 68

min, max, neural 54 53 82 84 69

In more than half of the classes, neural features improve the class recall.
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Conclusion

• We taxonomized neural-symbolic approaches based on neural networks and decision trees;

• We extended decision trees to the use of a temporal modal logic in order to tackle MTSC tasks;

• We introduced autoencoders for achieving a feature extraction specific to each temporal variable;

• We compared the split-level NN/DT hybrid approach with standard approaches at decision tree
modeling, that involve flattening the time axis via simple features (minimum and maximum);

• We showed that this approach improves the performance w.r.t. symbolic-only decision trees.
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Future steps

• Define and experiment with the other presented neural-symbolic approaches (e.g, leaf-level);

• Investigate on the level of transparency and interpretability of these approaches.
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