
Reasoning on Dynamic Transformations of
Symbolic Heaps

N. Peltier

Univ. Grenoble Alpes, CNRS, LIG, CAPP - ANR Project Narco

TIME 22 — 29th International Symposium on Temporal
Representation and Reasoning

November 2022

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Overview

Starting point :

A fragment of separation logic (SL) with inductive definitions
(symbolic heaps)
Specify pointer-based recursive data structures
The entailment problem is decidable if the inductive definitions
satisfy some conditions (the PCE conditions)

How to handle dynamic transformations of the data
structures ?

Entailment problems of the form :

ϕ |=S
R Ψ

where ϕ is an SL formula and Ψ an LTL formulas built on SL
formulas, interpreted modulo some inductive rules R and
some finite transition system S
The problem is undecidable in general, decidable under some
conditions

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Separation Logic - Syntax

Variables (no function symbols) interpreted as locations
(memory addresses)

Equational atoms : x ≈ y or x ̸≈ y

Spatial atoms (describes the shape of the heap) :

emp (“empty”)
x 7→ (y1, . . . , yk) (“x is the only allocated location and refers
to y1, . . . , yk”)
p(x1, . . . , xn), where p is an inductively defined spatial
predicate. Describes some part of the heap of unbounded size,
e.g., a list segment ls(x , y)

Usual connective : ∨ (no negation, no conjunction)

Special connective : ∗ (separating conjunction)

Quantifier ∃ (no ∀)

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Separation Logic - Interpretations

Let Loc be an infinite (countable) set of locations (e.g., addresses).
Formulas are interpreted over structures (s, h) where :

s is a function (store) mapping every variable to an element of
Loc

h is a partial finite function (heap) from Loc to Loc∗

A location is allocated if it occurs in dom(h)

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Separation Logic - Evaluation

Let ϕ be a formula without spatial predicate symbols. (s, h) |= ϕ iff
one of the following conditions hold :

ϕ is x ≈ y , s(x) = s(y) and h = ∅
ϕ is x ̸≈ y , s(x) ̸= s(y) and h = ∅
ϕ is emp and h = ∅
ϕ is x 7→ (y1, . . . , yk), h(s(x)) = (s(y1), . . . , s(yk)) and
dom(h) = {s(x)}
ϕ = ϕ1 ∨ ϕ2 and there exists i = 1, 2 such that (s, h) |= ϕi

ϕ = ∃x ψ and there exists ℓ ∈ Loc such that
(s[x ← ℓ], h) |= ψ

ϕ = ϕ1 ∗ ϕ2 and there exist disjoint heaps h1, h2 such that
h = h1 ∪ h2 and for every i = 1, 2, (s, hi) |= ϕi

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Separation Logic - Evaluation Of Inductively Defined
Predicates

Every spatial predicate p is associated with a set of rules
p(x1, . . . , xn)⇐ ϕ (provided by the user)

We write ψ → ψ′ if ψ′ is obtained from ψ by replacing an
occurrence of an atom p(y1, . . . , yn) by
ϕ[xi ← yi | i = 1, . . . , n]

(s, h) |=R p(x1, . . . , xn) iff there exists a formula ψ not
containing any predicate symbol, such that (s, h) |=R ψ and
p(x1, . . . , xn)→∗ ψ

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Example

Non empty list segments :

ls(x , y) ⇐ x 7→ (y) base case
ls(x , y) ⇐ ∃z (x 7→ (z) ∗ ls(z , y)) inductive case

With this definition :

x 7→ (y) ∗ y 7→ (z) |=R ls(x , z)

ls(x , y) ∗ ls(y , z) |=R ls(x , z)

ls(x , y) ∗ ls(y , x) |=R ∃u ls(u, u)

ls(x , y) ∗ ls(x , y ′) is unsatisfiable

x 7→ (y) ∗ y 7→ (z) ∗ x ≈ y is unsatisfiable

x 7→ (y) ∗ y 7→ (z) ̸|=R x ̸≈ y

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Existing Results

Satisfiability is decidable (Brotherston et al., LICS 14)

Entailment is undecidable in general : an easy reduction from
the inclusion problem for context-free grammars

Decidable for a specific class of inductive definitions (Iosif,
Rogalewicz, Simácek, CADE 2013)

A 2-EXPTIME algorithm (Katelaan and Zuleger, LPAR 20)

The 2-EXPTIME bound is tight (Echenim, Iosif and Peltier,
LPAR 2020)

A 2-EXPTIME algorithm handling existential variables
(Echenim, Iosif, Peltier CSL 2020)

Other complexity results for specific fragments

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

A Class Of Inductive Definitions For Which Entailment Is
Decidable

3 conditions :

1 Progress (P) : Every rule allocates exactly one memory
location, i.e., is of the form
p(x1, . . . , xn)⇐ ∃z1, . . . , zm . x1 7→ (y1, . . . , yk) ∗ ϕ, where ϕ
contains no 7→
The variable x1 is called the root of p(x1, . . . , xn)

2 Connectivity (C) : If an atom q(x ′1, . . . , x
′
l) occurs in ϕ, then

necessarily x ′1 = yi , for some i = 1, . . . , k

3 Establishment (E) : For every i = 1, . . . ,m, zi is allocated in
all models of ϕ

PCE problems : Progress, Connectivity and Establishment

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Heap Constraints

Definition

A heap constraint is a triple (S+,S−,X), where S+ and S− are
sets of symbolic heaps, S+ ̸= ∅ and X is a finite set of variables

Definition

A heap constraint is satisfiable iff there exists a structure (s, h)
satisfying all formulas in S+, satisfying no formula in S− and
allocating no variables in X

Theorem

The satisfiability problem is decidable for heap constraints (with
PCE rules)

Proof : an easy extension of existing results

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Dynamic Transformation Of Heaps : Actions

Terms : x or x .i , where x is a variable, i ∈ N (non nested)

Basic actions :

affectations : x := s, where x is a variable and s is a term
redirections : x .i := s, where s is a term
allocations : alloc(x) (x refers to (x , . . . , x))
desallocations : free(x)
null actions : pass
tests : test(γ), where γ is a condition, i.e., a boolean
combination of equations t ≈ s between terms

(s, h)[a] : structure (s′, h′) obtained by applying a on (s, h)

(s, h)[a] is a partial function (a may “fail”)

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Dynamic Transformation Of Heaps : Transition Systems

Transition systems are finite state automata, where edges are
labeled by actions

A run from an initial structure (s, h) is an infinite path
a1, . . . , an, . . . in the automaton such that there exists a
sequence (si , hi) with :

(s0, h0) = (s, h)
For all i ≥ 0, (si+1, hi+1) = (si , hi)[ai] (must be defined)

Only infinite runs are considered

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Transition Systems - Example

0start 1 2
alloc(x) x .1 := y

pass

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

LTL Formulas

Syntax :

LTL atoms : SL formulas , atomic conditions, actions and
states

Usual LTL connectives : ¬Φ, Φ ∨Ψ, XXX Φ, ΦUUU Ψ etc.

Semantics :

Given R and S, an LTL formula is interpreted w.r.t. some
initial (time 0) structure (s, h) and run (si , hi) (i ∈ N)
(corresponding to a given path in the transition system)

SL atoms and conditions are interpreted on (si , hi) at time i

Actions and states refer to the considered run : state and
transition applied at time i

LTL connectives are handled as usual

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Entailment Problem

Entailment problem :
ϕ |=S

R Ψ

where

ϕ is an SL formula, Ψ is an LTL formula

R is a set of inductive definitions (PCE), S is a transition
system

e.g., ls(y , z) |=S
R FFF ls(x , z) or ls(y , z) |=S

R GGG (2⇒ ls(x , z))

Theorem

The entailment problem is undecidable

Proof : S encodes a Turing machine, ϕ allocates a tape of
unbounded size, Ψ states that the machine does not terminate

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

A Restriction On Transition Systems

Definition

A system is oriented if affectations do not occur inside a cycle (i.e.,
no action x := s where x is a variable occurs inside a path from
some state q to q)

Our goal :

Define an algorithm to test entailments, that will terminate on
oriented systems

Idea : reduce the entailment problem to an LTL satisfiability
problem

Expresses transitions and SL properties as LTL formulas

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

LTL Encoding

Encoding of states and transitions is trivial

Encoding of “static” SL properties

Dismiss unsatisfiable sets of SL literals (SL formulas or
negations of SL formulas)
e.g., the valid SL entailment

ls(x , y) ∗ ls(y , z) |=R ls(x , z)

should yield the LTL axiom :

¬(ls(x , y) ∗ ls(y , z)) ∨ ls(x , z)

Encode the semantics of actions, i.e. :

state preconditions of actions
e.g. x .1 := y possible only if x is allocated

relate (s, h) and (s, h)[a]
→ use a weakest precondition calculus

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Weakest Precondition Calculus

Weakest precondition : given an SL formula ϕ and an action
a, wpc(ϕ, a) asserts conditions ensuring that ϕ is satisfied
after the action is performed

Can wpc(ϕ, a) be computed and expressed in SL ?

In some cases, yes, for instance :

wpc(ϕ, free(x))
def

= ∃y1 . . . ∃yk .(ϕ ∗ x 7→ (y1, . . . , yk)).

wpc(ϕ, x := y)
def

= ϕ{x ← y} (if x , y are variables)

For actions depending on x .i , this is feasible only if x is
explicitly allocated in the formula ϕ, i.e., if ϕ contains an
atom x 7→ (x1, . . . , xk)

For instance : wpc(∃x.(ϕ ∗ x 7→ (x1, . . . , xk)), x .i := y) is
∃x∃x ′.(ϕ ∗ x 7→ (x1, . . . , xi−1, x

′, xi+1, . . . , xk) ∗ xi ≈ y)
but wpc(ls(x , z), x .i := y) cannot be defined

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

How To Enforce The “Explicit” Allocation Of Variables ?

Given an SL formula ϕ and a variable x , can we compute an SL
formula ψ such that :

ψ and ϕ are equivalent in all structures (s, h) in which s(x) is
allocated

ψ contains an atom of the form x 7→ (x1, . . . , xk)

Example :

ϕ = ls(y , z)

Solution :

ψ = ∃u (x 7→ (z) ∗ x ≈ y)
∨∃u (x 7→ (u) ∗ ls(u, z) ∗ x ≈ y)
∨(ls(y , x) ∗ x 7→ (z))
∨∃u (ls(y , x) ∗ x 7→ (u) ∗ ls(u, z))

Can ψ be computed automatically in all cases ?

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Context Predicates

Answer : yes (for PCE rules), but this requires to create new
predicates and rules

For every pair of predicates p, q with arities n and m, define a
predicate (q −−• p) of arity n +m

(q −−• p)(x1, . . . , xn, y1, . . . , ym) is satisfied by all (non empty)
structures that will satisfy p(x1, . . . , xn) after a disjoint heap
satisfying q(y1, . . . , ym) is added to the current heap

The rules of (q −−• p) are defined exactly as those of p, except
that exactly one call to q(y1, . . . , ym) is removed

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Context Predicates

More formally, for each rule

p(u1, . . . , un)⇐ ∃w.(u1 7→ (y) ∗ p′(z) ∗ ψ)

we add :

(q −−• p)(u1, . . . , un, v1, . . . , vm)⇐
∃w.(u1 7→ (y) ∗ (q −−• p′)(z, v1, . . . , vm) ∗ ψ)

(q −−• p)(u1, . . . , un, v1, . . . , vm)⇐
∃w.(u1 7→ (y) ∗ z ≈ (v1, . . . , vm) ∗ ψ) if q = p′

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Context Predicates

Given a formula ϕ and a variable x , ψ is the disjunction of
formulas obtained as follows :

Choose an atom p(y , z) in ϕ, and either :

add the condition x ≈ y and replace p(y , z) by p(x , z)
or replace p(y , z) by ∃u ((q −−• p)(y , z, x ,u) ∗ q(x ,u))

In both cases, we get an atom with first argument x

By the progress condition, it suffices to unfold this atom once
to get an atom of the form x 7→ (. . .)

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

LTL Encoding (Continued)

Using context predicates, weakest preconditions can be
automatically computed in all cases

Allow one to encode all the properties of the transition
systems in LTL (see paper for the definition of the set of
axioms)

If S is oriented then the obtained set of axioms is finite

Intuition : the set of “visible” locations is finite, hence the set
of symbolic heaps that need to be considered is finite

The entailment problem ϕ |=S
R Ψ can be reduced to an LTL

satisfiability test (if R is PCE and S is oriented)

Generating all axioms at once is not practical : use a
incremental model-refinement algorithm instead

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Entailment Checking Algorithm

A ← {ϕ, qI ,¬Ψ}
while A admits an LTL interpretation I do

S+ ← {ϕ | I(ϕ, 0) = true, ϕ is a symbolic heap}
S− ← {ϕ | I(ϕ, 0) = false, ϕ is a symbolic heap}
X ← {x ∈ V⋆ | I(ϕ, 0) ̸|= alloc(x) (i.e. I(ϕ, 0) ̸|= x .1 ≈ x .1) }
if Heap constraint (S+,S−,X) is unsatisfiable then
A ← A∪ {χ}, where χ is an LTL-encoding of ¬(S+,S−,X)

else
Let (s, h) be an R-model of (S+,S−,X)
if I corresponds to a run r in S from (s, h) then

Return (s, h)
else

Let ψ be an axiom s.t. (s, h) ̸|=S
R ψ

A ← A∪ {ψ}
end if

end if
end while
Return ⊤

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Properties Of The Entailment Checking Algorithm

If the algorithm returns (s, h) then (s, h) is a counter-example
of the considered entailment problem

If the algorithm returns ⊤ then the considered entailment
problem is valid

The algorithm always terminates if S is oriented

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

LTL Encoding (Continued)

Why do we need both pre- and post-conditions ?

Weakest preconditions allow one to move all constraints
backward in the path, so that we get constraints on the initial
structure (at t = 0)

Strongest postconditions ensure that at every time at least
one symbolic heap is satisfied

→ allows one to encode all elementary conditions into the
considered fragment of SL

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

Future Work

Is the algorithm complete (for counter-examples) on non
oriented problems ?

Complexity ? (2- or 3-EXPTIME ?)

How to handle non deterministic actions ? (e.g., allocate a
new, arbitrary chosen, location)

Implementation

N. Peltier Reasoning on Dynamic Transformations of Symbolic Heaps

