Reasoning on Dynamic Transformations of Symbolic Heaps

N. Peltier

Univ. Grenoble Alpes, CNRS, LIG, CAPP - ANR Project Narco

TIME 22 — 29th International Symposium on Temporal Representation and Reasoning November 2022

Overview

- Starting point :
 - A fragment of separation logic (SL) with inductive definitions (*symbolic heaps*)
 - Specify pointer-based recursive data structures
 - The entailment problem is decidable if the inductive definitions satisfy some conditions (the *PCE* conditions)
- How to handle dynamic transformations of the data structures ?
- Entailment problems of the form :

$$\phi \models^{\mathcal{S}}_{\mathcal{R}} \Psi$$

where ϕ is an SL formula and Ψ an LTL formulas built on SL formulas, interpreted modulo some inductive rules \mathcal{R} and some finite transition system S

• The problem is undecidable in general, decidable under some conditions

- Variables (no function symbols) interpreted as locations (memory addresses)
- Equational atoms : $x \approx y$ or $x \not\approx y$
- Spatial atoms (describes the shape of the heap) :
 - emp ("empty")
 - x → (y₁,..., y_k) ("x is the only allocated location and refers to y₁,..., y_k")
 - p(x₁,...,x_n), where p is an inductively defined spatial predicate. Describes some part of the heap of unbounded size, e.g., a list segment ls(x, y)
- Usual connective : \lor (no negation, no conjunction)
- Special connective : * (separating conjunction)
- Quantifier \exists (no \forall)

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Let Loc be an infinite (countable) set of *locations* (e.g., addresses). Formulas are interpreted over structures $(\mathfrak{s}, \mathfrak{h})$ where :

- \$\varsis\$ is a function (*store*) mapping every variable to an element of Loc
- h is a partial finite function (heap) from Loc to Loc*
- A location is *allocated* if it occurs in $\operatorname{dom}(\mathfrak{h})$

Let ϕ be a formula without spatial predicate symbols. $(\mathfrak{s}, \mathfrak{h}) \models \phi$ iff one of the following conditions hold :

- ϕ is $x \approx y$, $\mathfrak{s}(x) = \mathfrak{s}(y)$ and $\mathfrak{h} = \emptyset$
- ϕ is $x \not\approx y$, $\mathfrak{s}(x) \neq \mathfrak{s}(y)$ and $\mathfrak{h} = \emptyset$
- ϕ is emp and $\mathfrak{h} = \emptyset$
- ϕ is $x \mapsto (y_1, \dots, y_k)$, $\mathfrak{h}(\mathfrak{s}(x)) = (\mathfrak{s}(y_1), \dots, \mathfrak{s}(y_k))$ and dom $(\mathfrak{h}) = \{\mathfrak{s}(x)\}$
- $\phi = \phi_1 \lor \phi_2$ and there exists i = 1, 2 such that $(\mathfrak{s}, \mathfrak{h}) \models \phi_i$
- $\phi = \exists x \ \psi$ and there exists $\ell \in \text{Loc such that}$ $(\mathfrak{s}[x \leftarrow \ell], \mathfrak{h}) \models \psi$
- $\phi = \phi_1 * \phi_2$ and there exist disjoint heaps $\mathfrak{h}_1, \mathfrak{h}_2$ such that $\mathfrak{h} = \mathfrak{h}_1 \cup \mathfrak{h}_2$ and for every i = 1, 2, $(\mathfrak{s}, \mathfrak{h}_i) \models \phi_i$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Separation Logic - Evaluation Of Inductively Defined Predicates

- Every spatial predicate p is associated with a set of rules $p(x_1, \ldots, x_n) \Leftarrow \phi$ (provided by the user)
- We write ψ → ψ' if ψ' is obtained from ψ by replacing an occurrence of an atom p(y₁,..., y_n) by φ[x_i ← y_i | i = 1,..., n]
- (𝔅, 𝔥) ⊨_𝔅 p(x₁,...,x_n) iff there exists a formula ψ not containing any predicate symbol, such that (𝔅, 𝔥) ⊨_𝔅 ψ and p(x₁,...,x_n) →[∗] ψ

伺 とう ほう うちょう

Example

Non empty list segments :

$$\begin{split} & ls(x,y) & \Leftarrow \ x \mapsto (y) & ext{base case} \\ & ls(x,y) & \Leftarrow \ \exists z \ (x \mapsto (z) * ls(z,y)) & ext{inductive case} \end{split}$$

With this definition :

$$\begin{aligned} x \mapsto (y) * y \mapsto (z) \models_{\mathcal{R}} ls(x, z) \\ ls(x, y) * ls(y, z) \models_{\mathcal{R}} ls(x, z) \\ ls(x, y) * ls(y, x) \models_{\mathcal{R}} \exists u \, ls(u, u) \\ ls(x, y) * ls(x, y') \text{ is unsatisfiable} \\ x \mapsto (y) * y \mapsto (z) * x \approx y \text{ is unsatisfiable} \\ x \mapsto (y) * y \mapsto (z) \not\models_{\mathcal{R}} x \not\approx y \end{aligned}$$

伺 ト イヨト イヨト

- Satisfiability is decidable (Brotherston et al., LICS 14)
- Entailment is undecidable in general : an easy reduction from the inclusion problem for context-free grammars
- Decidable for a specific class of inductive definitions (losif, Rogalewicz, Simácek, CADE 2013)
- A 2-EXPTIME algorithm (Katelaan and Zuleger, LPAR 20)
- The 2-EXPTIME bound is tight (Echenim, losif and Peltier, LPAR 2020)
- A 2-EXPTIME algorithm handling existential variables (Echenim, Iosif, Peltier CSL 2020)
- Other complexity results for specific fragments

< 同 > < 三 > < 三 >

A Class Of Inductive Definitions For Which Entailment Is Decidable

3 conditions :

- Progress (P) : Every rule allocates exactly one memory location, i.e., is of the form p(x₁,...,x_n) ⇐ ∃z₁,..., z_m . x₁ ↦ (y₁,...,y_k) * φ, where φ contains no ↦
 The variable x₁ is called the **root** of p(x₁,...,x_n)
- Connectivity (C) : If an atom q(x'₁,...,x'_i) occurs in φ, then necessarily x'₁ = y_i, for some i = 1,..., k
- Setablishment (E) : For every i = 1,..., m, z_i is allocated in all models of φ
- PCE problems : Progress, Connectivity and Establishment

伺 ト イ ヨ ト イ ヨ ト

Definition

A heap constraint is a triple (S^+, S^-, X) , where S^+ and S^- are sets of symbolic heaps, $S^+ \neq \emptyset$ and X is a finite set of variables

Definition

A heap constraint is *satisfiable* iff there exists a structure $(\mathfrak{s}, \mathfrak{h})$ satisfying all formulas in S^+ , satisfying no formula in S^- and allocating no variables in X

Theorem

The satisfiability problem is decidable for heap constraints (with PCE rules)

Proof : an easy extension of existing results

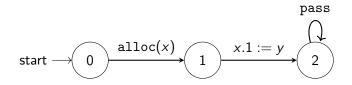
< 同 ト < 三 ト < 三 ト

Dynamic Transformation Of Heaps : Actions

- Terms : x or x.i, where x is a variable, $i \in \mathbb{N}$ (non nested)
- Basic actions :
 - affectations : x := s, where x is a variable and s is a term
 - redirections : x.i := s, where s is a term
 - allocations : alloc(x) (x refers to (x,...,x))
 - desallocations : free(x)
 - null actions : pass
 - tests : test(γ), where γ is a condition, i.e., a boolean combination of equations $t \approx s$ between terms
- $(\mathfrak{s},\mathfrak{h})[a]$: structure $(\mathfrak{s}',\mathfrak{h}')$ obtained by applying a on $(\mathfrak{s},\mathfrak{h})$
- $(\mathfrak{s},\mathfrak{h})[a]$ is a partial function (a may "fail")

伺下 イヨト イヨト

- Transition systems are finite state automata, where edges are labeled by actions
- A run from an initial structure (s, h) is an infinite path a₁,..., a_n,... in the automaton such that there exists a sequence (s_i, h_i) with :
 - $(\mathfrak{s}_0,\mathfrak{h}_0)=(\mathfrak{s},\mathfrak{h})$
 - For all $i \ge 0$, $(\mathfrak{s}_{i+1}, \mathfrak{h}_{i+1}) = (\mathfrak{s}_i, \mathfrak{h}_i)[a_i]$ (must be defined)
- Only infinite runs are considered



→ ∢ Ξ

Syntax :

- LTL atoms : SL formulas , atomic conditions, actions and states
- Usual LTL connectives : $\neg \Phi$, $\Phi \lor \Psi$, $X \Phi$, $\Phi U \Psi$ etc.

Semantics :

- Given *R* and *S*, an LTL formula is interpreted w.r.t. some initial (time 0) structure (s, h) and run (s_i, h_i) (i ∈ N) (corresponding to a given path in the transition system)
- SL atoms and conditions are interpreted on $(\mathfrak{s}_i, \mathfrak{h}_i)$ at time *i*
- Actions and states refer to the considered run : state and transition applied at time *i*
- LTL connectives are handled as usual

Entailment problem :

$$\phi \models_{\mathcal{R}}^{\mathcal{S}} \Psi$$

where

- ϕ is an SL formula, Ψ is an LTL formula
- ${\mathcal R}$ is a set of inductive definitions (PCE), ${\mathcal S}$ is a transition system

e.g.,
$$ls(y,z) \models_{\mathcal{R}}^{\mathcal{S}} \boldsymbol{F} ls(x,z)$$
 or $ls(y,z) \models_{\mathcal{R}}^{\mathcal{S}} \boldsymbol{G}(2 \Rightarrow ls(x,z))$

Theorem

The entailment problem is undecidable

Proof : S encodes a Turing machine, ϕ allocates a tape of unbounded size, Ψ states that the machine does *not* terminate

伺 ト イヨト イヨト

Definition

A system is *oriented* if affectations do not occur inside a cycle (i.e., no action x := s where x is a variable occurs inside a path from some state q to q)

Our goal :

- Define an algorithm to test entailments, that will terminate on oriented systems
- Idea : reduce the entailment problem to an LTL satisfiability problem
- Expresses transitions and SL properties as LTL formulas

LTL Encoding

- Encoding of states and transitions is trivial
- Encoding of "static" SL properties
 - Dismiss unsatisfiable sets of SL literals (SL formulas or negations of SL formulas)

e.g., the valid SL entailment

$$ls(x,y) * ls(y,z) \models_{\mathcal{R}} ls(x,z)$$

should yield the LTL axiom :

 \neg (*ls*(*x*, *y*) * *ls*(*y*, *z*)) \lor *ls*(*x*, *z*)

- Encode the semantics of actions, i.e. :
 - state preconditions of actions

e.g. x.1 := y possible only if x is allocated

• relate $(\mathfrak{s},\mathfrak{h})$ and $(\mathfrak{s},\mathfrak{h})[a]$

 \rightarrow use a weakest precondition calculus

Weakest Precondition Calculus

- Weakest precondition : given an SL formula φ and an action a, wpc(φ, a) asserts conditions ensuring that φ is satisfied after the action is performed
- Can $wpc(\phi, a)$ be computed and expressed in SL?
- In some cases, yes, for instance :
 - $wpc(\phi, free(x)) \stackrel{\text{\tiny def}}{=} \exists y_1 \dots \exists y_k . (\phi * x \mapsto (y_1, \dots, y_k)).$
 - $wpc(\phi, x := y) \stackrel{\text{\tiny def}}{=} \phi\{x \leftarrow y\}$ (if x, y are variables)
- For actions depending on x.i, this is feasible only if x is explicitly allocated in the formula φ, i.e., if φ contains an atom x → (x₁,...,x_k)
- For instance : $wpc(\exists \mathbf{x}.(\phi * x \mapsto (x_1, \dots, x_k)), x.i := y)$ is $\exists \mathbf{x} \exists x'.(\phi * x \mapsto (x_1, \dots, x_{i-1}, x', x_{i+1}, \dots, x_k) * x_i \approx y)$ but wpc(ls(x, z), x.i := y) cannot be defined

• (1) • (

How To Enforce The "Explicit" Allocation Of Variables?

Given an SL formula ϕ and a variable x, can we compute an SL formula ψ such that :

• ψ and ϕ are equivalent in all structures $(\mathfrak{s}, \mathfrak{h})$ in which $\mathfrak{s}(x)$ is allocated

• ψ contains an atom of the form $x \mapsto (x_1, \ldots, x_k)$ Example :

- $\phi = ls(y, z)$
- Solution :

$$\psi = \exists u (x \mapsto (z) * x \approx y) \\ \forall \exists u (x \mapsto (u) * ls(u, z) * x \approx y) \\ \forall (ls(y, x) * x \mapsto (z)) \\ \forall \exists u (ls(y, x) * x \mapsto (u) * ls(u, z))$$

Can ψ be computed automatically in all cases?

Answer : yes (for PCE rules), but this requires to create new predicates and rules

- For every pair of predicates p, q with arities n and m, define a predicate (q → p) of arity n + m
- (q → p)(x₁,...,x_n,y₁,...,y_m) is satisfied by all (non empty) structures that will satisfy p(x₁,...,x_n) after a disjoint heap satisfying q(y₁,...,y_m) is added to the current heap
- The rules of (q → p) are defined exactly as those of p, except that exactly one call to q(y₁,..., y_m) is removed

Context Predicates

More formally, for each rule

$$p(u_1,\ldots,u_n) \Leftarrow \exists \mathbf{w}.(u_1 \mapsto (\mathbf{y}) * p'(\mathbf{z}) * \psi)$$

we add :

$$(q \multimap p)(u_1, \ldots, u_n, v_1, \ldots, v_m) \Leftarrow \\ \exists \mathbf{w}.(u_1 \mapsto (\mathbf{y}) * (q \multimap p')(\mathbf{z}, v_1, \ldots, v_m) * \psi)$$

$$(q - \mathbf{\bullet} p)(u_1, \dots, u_n, v_1, \dots, v_m) \Leftarrow$$

 $\exists \mathbf{w}.(u_1 \mapsto (\mathbf{y}) * \mathbf{z} \approx (v_1, \dots, v_m) * \psi) \quad \text{if } q = p'$

▲御▶ ▲ 国▶ ▲ 国▶

Given a formula ϕ and a variable x, ψ is the disjunction of formulas obtained as follows :

- Choose an atom p(y, z) in ϕ , and either :
 - add the condition $x \approx y$ and replace $p(y, \mathbf{z})$ by $p(x, \mathbf{z})$
 - or replace $p(y, \mathbf{z})$ by $\exists \mathbf{u} ((q \rightarrow p)(y, \mathbf{z}, x, \mathbf{u}) * q(x, \mathbf{u}))$
- In both cases, we get an atom with first argument x
- By the progress condition, it suffices to unfold this atom once to get an atom of the form x → (...)

LTL Encoding (Continued)

- Using context predicates, weakest preconditions can be automatically computed in all cases
- Allow one to encode all the properties of the transition systems in LTL (see paper for the definition of the set of axioms)
- $\bullet\,$ If ${\mathcal S}$ is oriented then the obtained set of axioms is finite
- Intuition : the set of "visible" locations is finite, hence the set of symbolic heaps that need to be considered is finite
- The entailment problem φ ⊨^S_R Ψ can be reduced to an LTL satisfiability test (if R is PCE and S is oriented)
- Generating all axioms at once is not practical : use a incremental model-refinement algorithm instead

直 ト イヨ ト イヨト

Entailment Checking Algorithm

 $\mathcal{A} \leftarrow \{\phi, q_I, \neg \Psi\}$ while \mathcal{A} admits an LTL interpretation \mathcal{I} do $S^+ \leftarrow \{\phi \mid \mathcal{I}(\phi, 0) = true, \phi \text{ is a symbolic heap}\}$ $S^- \leftarrow \{\phi \mid \mathcal{I}(\phi, 0) = \text{false}, \phi \text{ is a symbolic heap}\}$ $X \leftarrow \{x \in \mathcal{V}^* \mid \mathcal{I}(\phi, 0) \not\models \texttt{alloc}(x) \text{ (i.e. } \mathcal{I}(\phi, 0) \not\models x.1 \approx x.1) \}$ if Heap constraint (S^+, S^-, X) is unsatisfiable then $\mathcal{A} \leftarrow \mathcal{A} \cup \{\chi\}$, where χ is an LTL-encoding of $\neg (S^+, S^-, X)$ else Let $(\mathfrak{s},\mathfrak{h})$ be an \mathcal{R} -model of (S^+,S^-,X) if \mathcal{I} corresponds to a run r in \mathcal{S} from $(\mathfrak{s}, \mathfrak{h})$ then Return $(\mathfrak{s}, \mathfrak{h})$ else Let ψ be an axiom s.t. $(\mathfrak{s}, \mathfrak{h}) \nvDash_{\mathcal{P}}^{\mathcal{S}} \psi$ $\mathcal{A} \leftarrow \mathcal{A} \cup \{\psi\}$ end if end if

end while

Return \top

周 ト イ ヨ ト イ ヨ ト

Properties Of The Entailment Checking Algorithm

- If the algorithm returns (\$, \$) then (\$, \$) is a counter-example of the considered entailment problem
- If the algorithm returns \top then the considered entailment problem is valid
- The algorithm always terminates if ${\mathcal S}$ is oriented

Why do we need both pre- and post-conditions?

- Weakest preconditions allow one to move all constraints backward in the path, so that we get constraints on the initial structure (at t = 0)
- Strongest postconditions ensure that at every time at least one symbolic heap is satisfied
 - $\rightarrow\,$ allows one to encode all elementary conditions into the considered fragment of SL

- Is the algorithm complete (for counter-examples) on non oriented problems?
- Complexity? (2- or 3-EXPTIME?)
- How to handle non deterministic actions? (e.g., allocate a new, arbitrary chosen, location)
- Implementation