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”[...] CEP languages are often oversimplified, providing only a small set of operators,

insufficient to express a number of desirable patterns and the rules to combine incoming

information to produce new knowledge. Even worse, the semantics of such languages is

usually given only informally, which leads to ambiguities and makes it difficult compare the

different proposals.“

G. Cugola and A. Margara

“TESLA: A formally defined event specification language”, DEBS 2010.

See also [1] and [2].
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“Complex event recognition in the Big Data era: a survey.” VLDB J. 29(1), 2020.
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What do we expect for a query language for CER?

1. Formal syntax and semantics.

“For every query and stream, the output will be defined precisely.”

2. Declarative, denotational semantics.

“The semantics will specify what the output is, but not how to compute it.”

3. Composable language.

“The language operators can be combined as free as possible.”

Complex Event Logic (CEL) is our proposal for a CER query language with these properties.
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Data model for complex event recognition

Definition
A complex event is a pair ([i , j],C) where

[i , j] is an interval that denotes the start and end of the complex event;

C ⊆ {i , i + 1, . . . , j} is a finite set of selected events.
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Complex event logic (CEL)

CEL syntax
ϕ ∶= R

∣ ϕ ; ϕ ∣ ϕ OR ϕ ∣ ϕ + ∣ ϕ AS X ∣ ϕ FILTER P(X) ∣ πX (ϕ)

R is an event type.

X is a variable.

P(X) is a predicate over variables X = X1, . . . ,Xk .

Example of a CEL formula

ϕ = (B ; (S+ AS X) ; B) FILTER SameStock(X)

Variables in CEL represent sets of events (i.e. complex events)
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Complex event logic: semantics

Definition

Given a set of variables X , a valuation V is a pair ([i , j], µ) with µ ∶ X → 2N a function that maps

each variable X ∈ X to a finite set µ(X) ⊆ {i , . . . , j}.

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯Input:

Output: [ ]B0 S2 S4

X Z X ,Y

[ ]B3 S4

Y X

CEL semantics
The complex event semantics ⟦ϕ⟧ of CEL formula ϕ is obtained from VϕU by returning all events

in the image of µ.
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Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

VRU(S) = {V ∣ V (time) = [i , i] ∧ type(S[i]) = R

∧ V (R) = {i} ∧ ∀X ≠ R. V (X) = ∅ }

Example: ϕ = B
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Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Definition
Consider universal predicates P(X1, . . .Xn) of the form:

P(X1, . . .Xn) ∶= ∀t1 ∈ X1 . . . ∀tn ∈ Xn. PE(t1, . . . , tn)

where PE(t1, . . . , tn) is a first-order predicate over tuples.

Examples

Stock=a(X) ∶= ∀t ∈ X . t[stock] = ‘a‘

SameStock(X1,X2) ∶= ∀t1 ∈ X1.∀t2 ∈ X2. t1[stock] = t2[stock]

The definition of CEL considers any predicate over tuples of sets of events

but we restrict to universal predicates to fit our purposes.



Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Definition
Consider universal predicates P(X1, . . .Xn) of the form:

P(X1, . . .Xn) ∶= ∀t1 ∈ X1 . . . ∀tn ∈ Xn. PE(t1, . . . , tn)

where PE(t1, . . . , tn) is a first-order predicate over tuples.

Examples

Stock=a(X) ∶= ∀t ∈ X . t[stock] = ‘a‘

SameStock(X1,X2) ∶= ∀t1 ∈ X1.∀t2 ∈ X2. t1[stock] = t2[stock]

The definition of CEL considers any predicate over tuples of sets of events

but we restrict to universal predicates to fit our purposes.



Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Definition
Consider universal predicates P(X1, . . .Xn) of the form:

P(X1, . . .Xn) ∶= ∀t1 ∈ X1 . . . ∀tn ∈ Xn. PE(t1, . . . , tn)

where PE(t1, . . . , tn) is a first-order predicate over tuples.

Examples

Stock=a(X) ∶= ∀t ∈ X . t[stock] = ‘a‘

SameStock(X1,X2) ∶= ∀t1 ∈ X1.∀t2 ∈ X2. t1[stock] = t2[stock]

The definition of CEL considers any predicate over tuples of sets of events

but we restrict to universal predicates to fit our purposes.



Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Definition
Consider universal predicates P(X1, . . .Xn) of the form:

P(X1, . . .Xn) ∶= ∀t1 ∈ X1 . . . ∀tn ∈ Xn. PE(t1, . . . , tn)

where PE(t1, . . . , tn) is a first-order predicate over tuples.

Examples

Stock=a(X) ∶= ∀t ∈ X . t[stock] = ‘a‘

SameStock(X1,X2) ∶= ∀t1 ∈ X1.∀t2 ∈ X2. t1[stock] = t2[stock]

The definition of CEL considers any predicate over tuples of sets of events

but we restrict to universal predicates to fit our purposes.



Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Definition
Consider universal predicates P(X1, . . .Xn) of the form:

P(X1, . . .Xn) ∶= ∀t1 ∈ X1 . . . ∀tn ∈ Xn. PE(t1, . . . , tn)

where PE(t1, . . . , tn) is a first-order predicate over tuples.

Examples

Stock=a(X) ∶= ∀t ∈ X . t[stock] = ‘a‘

SameStock(X1,X2) ∶= ∀t1 ∈ X1.∀t2 ∈ X2. t1[stock] = t2[stock]

The definition of CEL considers any predicate over tuples of sets of events

but we restrict to universal predicates to fit our purposes.



Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ FILTER P(X)U(S) = {V ∣ V ∈ VϕU(S) ∧V (X) ∈ P }
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B,X S,X B
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Complex event logic: semantics

CEL semantics (final)

The output of a CEL formula ϕ over a stream S at position n is defined as:

⟦ϕ⟧n(S) = { (V (time),⋃
X

V (X)) ∣ V ∈ VϕU(S),V (end) = n}

All complex events that satisfy the formula are given as output
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Selection strategies

CER systems includes operations to filter complex events:

Selection strategies

usually defined by an algorithm.

Example: skip-till-next-match in SASE

“a further relaxation is to remove the contiguity requirements:

all irrelevant events will be skipped until the next relevant event is read.” [1]

In CEL we declaratively formalize existing selection strategies, and propose new ones [2].

[1] D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman

“On supporting Kleene closure over event streams”, ICDE 2008.

[2] A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren

“A Formal Framework for Complex Event Recognition”, ACM TODS 46(4), 2021.
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Complex event automata

Let P1 be the set of all unary predicates over tuples.

Definition
A complex event automata (CEA) is a tuple A = (Q,∆, I ,F) where:

1. Q is a finite set of states,

2. I and F are the sets of initial and final states, and

3. ∆ ⊆ Q × P1 × {●, ○} ×Q is the transition relation.

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}
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From CEL to CEA?

Theorem

For every CEL-formula ϕ with unary predicate filters we can construct a CEA A of size linear in ϕ

s.t.

⟦ϕ⟧n(S) = ⟦A⟧n(S) for every stream S and position n.

CEA form a model of the “regular fragment” of CER queries.

Selection strategies can be encoded in the automaton model, see [1].

CEL can be extended to capture the expressive power of CEA, see [1].

[1] A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren

“A Formal Framework for Complex Event Recognition”, ACM TODS 46(4), 2021.
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The partial match problem in current engines

(Written in

SASE+

language)

FROM StockMarketStream

PATTERN BUY b1, BUY b2, ... , BUY bk

WITHIN 10 seconds

RETURN b1, b2, ..., bk
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Overcoming the partial match problem

Main idea
“Separate the streaming evaluation of CEA A into two processes”

1. Update on each event

● We keep a compact representation T of partial outputs (runs).

● For each new event e, we take linear time ∣e ∣ + ∣A∣ to update T , independently of ∣T ∣.

2. Enumeration of outputs (output-linear delay enumeration)

● Whenever an event triggers new recognized complex events, the enumeration phase is

called, independent of the update process.

● All complex events C1,C2, . . . for the current position are enumerated taking O(∣Ci ∣) time

to print Ci .
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If an evaluation algorithm E satisfies 1. and 2.,

we say that E has output-linear delay evaluation.
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CEA evaluation strategy

Definition
Let ε ∈ N ∪ {∞}, let A be a CEA and S a stream. We define

⟦A WITHIN ε⟧(S) ∶= {C ∈ ⟦A⟧(S) ∣ C(end) − C(start) ≤ ε}.
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⟦A WITHIN ε⟧ can be evaluated with output-linear delay, for every CEA A and every ε.

Main ideas of the algorithm:

1. A notion of I/O deterministic CEA.

2. A timed Enumerable Compact Set (tECS) for compactly representing complex events and

enumerating all outputs with window-size ε.

3. An evaluation algorithm for incrementally building tECS given active states of I/O

deterministic CEA.
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I/O determinism

Definition

A CEA is I/O deterministic if for every pair of transitions qP1/m1ÐÐ→q1 and qP2/m2ÐÐ→q2 from the same

state q, if P1 ∩ P2 ≠ ∅ then m1 /= m2.

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}
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Definition

A CEA is I/O deterministic if for every pair of transitions qP1/m1ÐÐ→q1 and qP2/m2ÐÐ→q2 from the same

state q, if P1 ∩ P2 ≠ ∅ then m1 /= m2.

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○
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Proposition

CEA can be I/O-determinized in exponential time.



Timed Enumerable Compact Sets

Definition
A timed Enumerable Compact Set (tECS) is a DAG with three kinds of nodes: bottom nodes,

position nodes, and union nodes, with out-degree 0, 1, and 2, respectively.
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Timed Enumerable Compact Sets: semantics

Definition
A open complex event is a pair (i ,C) with i ∈ N and C ⊆ N finite.

Semantics:

Every path from a node to a bottom node defines an open complex event.

A node n hence encodes a set ⟦n⟧ of open complex events.

0 0

1 1

∨
2 4

5 ∨ 6

Open complex event: (0,{0,5,6})Open complex event: (0,{0,2,6})Open complex event: (1,{1,2,6})Open complex event: (1,{1,2})
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Timed Enumerable Compact Sets: enumeration

For each position node n, window size ε and j ∈ N we want to be able to enumerate

⟦n⟧ε(j) ∶= {

([i , j],C)

∣ (i ,C) ∈ ⟦n⟧

, j − i ≤ ε

}

with output-linear delay.

In order to allow this, we need the following structure on tECS:

For every node n, distinct paths starting at n encode distinct open complex events.

Nodes store their max-start time: the largest time value of any bottom node reachable from n.

The children of union nodes u are max-start sorted: max(left(u)) ≥ max(right(u)).

There is a constant bounding the length of chains of union left-child paths.
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Timed Enumerable Compact Sets: enumeration

Theorem
Under the previous conditions, we may enumerate

⟦n⟧ε(j) = {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

Example: n = 6, ε = 5, j = 6

output ([1,6],{1,5,6})output ([1,6],{1,2,6})

0 0

1 1

∨
2 4

5 ∨ 6
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1 1

1 1 1

Enumeration algorithm:

Do depth-first search, starting from n.

Visit left-children of union nodes before right-children.

Before moving to a child c, check that j −max(c) ≤ ε.
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Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.
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Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.
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CORE: COmplex event Recognition Engine

An open-source implementation [1] of our approach.

1. Practical query language (CEQL) based on unary CEL.

2. Evaluation in constant update-time and output-linear delay, based on CEA.

3. CORE’s performance is stable w.r.t query and time-window size.

4. CORE outperforms existing systems by up to 5 orders of magnitude.

[1] https://github.com/CORE-cer/CORE

https://github.com/CORE-cer/CORE
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CEQL: Complex Event Query language

SELECT < list-of-variables >
FROM < list-of-streams >
WHERE < CEL-formula >
FILTER < list-of-filters >
[PARTITION BY < list-of-attributes >]

[WITHIN < time-value >]

Examples (Stock Market)

1. SELECT * FROM Stocks

WHERE SELL as msft; SELL as intel; SELL as amzn

FILTER msft[name="MSFT"] AND msft[price > 100]

AND intel[name="INTL"]

AND amzn[name="AMZN"] AND amzn[price < 2000]

[
SELL

MSFT

101
][

SELL
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][

SELL

INTL

80
] [

BUY

INTL

80
][

SELL

AMZN

1900
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BUY

INTL

81
][

BUY

AMZN

1920
] ⋯

(type)

(name)

(price)
Stream:
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SELL

INTL

80

10:10

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

BUY

INTL

80

10:14

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

SELL

AMZN

1900

10:25

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

BUY

INTL

81

10:30

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

BUY

AMZN

1920

10:33

⎤⎥⎥⎥⎥⎥⎦
⋯

(type)

(name)

(price)

(time)

Stream:
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SELECT * FROM Dataset

WHERE A1 ; A2 ; ... ; An

FILTER A1[filter1] AND ... AND An[filtern]

WITHIN T

We use sequences of length n = 3,6,9,12,24.
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Experiments: Window queries
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In the paper [1], we show similar results with other query workloads

[1] M. Bucchi, A. Grez, A. Quintana, C. Riveros, and S. Vansummeren

“CORE: a Complex Event Recognition Engine”, VLDB 2022.
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Time Model

Limitation: No out-of-order events

Time is implicit, given by arrival order

Crucial property for CEA evaluation:
Events arrive in timestamp order

Open question: What is the impact of out-of-order events on

Language design and expressiveness ?

Evaluation model (CEA) and complexity ?
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Event correlation

Limitation: CORE and CEQL are based on unary CEL

Unary CEL does not allow event correlation.

. . . partially solved by PARTITION BY in CEQL for equality in limited cases.

Example: unsupported

ϕ = (B ; S) FILTER B[id] = S[id] ∧B[volume] > S[volume]

Open questions:

What is the impact of moving to k-ary predicates, k > 1 on Language expressiveness ?

What is the right computational model (à la CEA) with binary predicates ?

How does this affect complexity?
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Processing versus recognition

Limitation: CORE, CEQL, and CEL focus on complex event recognition

Other features in the literature that focus on processing of complex events are not supported:

aggregation

integration of non-event data sources

parallel or distributed execution

Open questions:

What is the right language for CER + aggregation?

What is the right computational model (à la CEA) in the presence of aggregation?

How does aggregation affect evaluation complexity?
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