Getting to the CORE of Complex Event Recognition

Stijn Vansummeren

UHasselt, Data Science Institute

My goal for this talk

My goal for this talk

1. Present a logic for CER.
2. Introduce CEA, an automaton model for CER.
3. Explain our algorithm for processing CEA in constant-time per event.
4. Discuss limitations and open questions.

My goal for this talk

1. Present a logic for CER.
2. Introduce CEA, an automaton model for CER.
3. Explain our algorithm for processing CEA in constant-time per event.
4. Discuss limitations and open questions.

A Formal Framework for Complex Event Recognition ACM TODS 46(4), 2021

CORE: a Complex Event Recognition Engine VLDB 2022

My goal for this talk

1. Present a logic for CER.
2. Introduce CEA, an automaton model for CER.
3. Explain our algorithm for processing CEA in constant-time per event.
4. Discuss limitations and open questions.

Marco Bucchi

Alejandro Grez

Andrés Quintana

Cristian Riveros

Martin Ugarte PUC Chile, IMFD

Outline

A logic for CER

An automaton model for CER

Evaluation algorithm

The CORE complex event recognition engine

Open questions
"[...] CEP languages are often oversimplified, providing only a small set of operators, insufficient to express a number of desirable patterns and the rules to combine incoming information to produce new knowledge. Even worse, the semantics of such languages is usually given only informally, which leads to ambiguities and makes it difficult compare the different proposals. "
G. Cugola and A. Margara
"TESLA: A formally defined event specification language", DEBS 2010.
"[..] CEP languages are often oversimplified, providing only a small set of operators, insufficient to express a number of desirable patterns and the rules to combine incoming information to produce new knowledge. Even worse, the semantics of such languages is usually given only informally, which leads to ambiguities and makes it difficult compare the different proposals. "
G. Cugola and A. Margara
"TESLA: A formally defined event specification language", DEBS 2010.

See also [1] and [2].

[1] D. Zimmer and R. Unland

"On the semantics of complex events in active database management systems." ICDE 1999.
[2] N. Giatrakos, E. Alevizos, A. Artikis, A. Deligiannakis, M. N. Garofalakis
"Complex event recognition in the Big Data era: a survey." VLDB J. 29(1), 2020.

What do we expect for a query language for CER?

What do we expect for a query language for CER?

1. Formal syntax and semantics.
"For every query and stream, the output will be defined precisely."
2. Declarative, denotational semantics.
"The semantics will specify what the output is, but not how to compute it."
3. Composable language.
"The language operators can be combined as free as possible."

What do we expect for a query language for CER?

1. Formal syntax and semantics.
"For every query and stream, the output will be defined precisely."
2. Declarative, denotational semantics.
"The semantics will specify what the output is, but not how to compute it."
3. Composable language.
"The language operators can be combined as free as possible."

Complex Event Logic (CEL) is our proposal for a CER query language with these properties.

Data model for complex event recognition

Data model for complex event recognition

"A stream is a sequence of events where each event is represented as a tuple."

Event:

Data model for complex event recognition

"A stream is a sequence of events where each event is represented as a tuple."

Event:

Data model for complex event recognition

"A stream is a sequence of events where each event is represented as a tuple."

Stream:

$$
B(16, a) \quad B(23, c) \quad S(16, b) \quad B(25, a) \quad S(11, c) \quad S(12, d) \cdots
$$

Data model for complex event recognition

"A stream is a sequence of events where each event is represented as a tuple."

Stream:

Data model for complex event recognition

"A stream is a sequence of events where each event is represented as a tuple."

Stream:

Data model for complex event recognition

"A stream is a sequence of events where each event is represented as a tuple."

Stream:

$$
\begin{gathered}
\mathrm{B}(16, a) \\
\frac{B(23, c)}{\mathrm{S}(16, b)} \mathrm{B}(25, a) \\
2
\end{gathered}
$$

Data model for complex event recognition

"A stream is a sequence of events where each event is represented as a tuple."

Stream:

$$
\begin{gathered}
B(16, a) \\
\uparrow \\
3
\end{gathered}
$$

Data model for complex event recognition

"A stream is a sequence of events where each event is represented as a tuple."

Stream:

$$
B(16, a) \mathrm{B}(23, c) \mathrm{S}(16, b) \mathrm{B}(25, a) \underset{4}{S(11, c)} \underset{4}{S(12, d)} \cdots
$$

Data model for complex event recognition

"A stream is a sequence of events where each event is represented as a tuple."

Stream:

Data model for complex event recognition

"A stream is a sequence of events where each event is represented as a tuple."

Stream:

$$
B(16, a) \quad B(23, c) \quad S(16, b) \quad B(25, a) \quad S(11, c) \quad S(12, d) \cdots
$$

Data model for complex event recognition

"A stream is a sequence of events where each event is represented as a tuple."

Stream:

$$
\mathrm{B}_{0}(16, a) \mathrm{B}_{1}(23, c) \mathrm{S}_{2}(16, b) \quad \mathrm{B}_{3}(25, a) \quad \mathrm{S}_{4}(11, c) \mathrm{S}_{5}(12, d) \cdots
$$

Data model for complex event recognition

"A stream is a sequence of events where each event is represented as a tuple."

Stream:

$$
B_{0} \quad B_{1} \quad S_{2} \quad B_{3} \quad S_{4} \quad S_{5}
$$

Data model for complex event recognition

Definition

A complex event is a pair $([i, j], C)$ where

- $[i, j]$ is an interval that denotes the start and end of the complex event;
- $C \subseteq\{i, i+1, \ldots, j\}$ is a finite set of selected events.

Data model for complex event recognition

Definition

A complex event is a pair $([i, j], C)$ where
$\square[i, j]$ is an interval that denotes the start and end of the complex event;

- $C \subseteq\{i, i+1, \ldots, j\}$ is a finite set of selected events.

Complex event:

Data model for complex event recognition

Definition

A complex event is a pair $([i, j], C)$ where

- $[i, j]$ is an interval that denotes the start and end of the complex event;
- $C \subseteq\{i, i+1, \ldots, j\}$ is a finite set of selected events.

Complex event: $\left.\begin{array}{llll}B_{0} & S_{2} & S_{4} & S_{5}\end{array}\right]$

Data model for complex event recognition

Definition

A complex event is a pair $([i, j], C)$ where

- $[i, j]$ is an interval that denotes the start and end of the complex event;
- $C \subseteq\{i, i+1, \ldots, j\}$ is a finite set of selected events.

Complex event:

$$
\left[\begin{array}{llll}
& B_{3} & S_{4} & S_{6}
\end{array}\right]
$$

Data model for complex event recognition

" Complex Event Recognition (CER) is the act of recognizing complex events in a stream of primitive events."

Data model for complex event recognition

" Complex Event Recognition (CER) is the act of recognizing complex events in a stream of primitive events."

Input:

$$
\begin{array}{llllllllllllllllll}
B_{0} & B_{1} & S_{2} & B_{3} & S_{4} & S_{5} & S_{6} & B_{7} & B_{8} & B_{9} & \cdots
\end{array}
$$

Data model for complex event recognition

" Complex Event Recognition (CER) is the act of recognizing complex events in a stream of primitive events."

Input:

Output:

Data model for complex event recognition

" Complex Event Recognition (CER) is the act of recognizing complex events in a stream of primitive events."

Input:

Output:

$$
\left[B_{0}\right.
$$

$$
\mathrm{S}_{2}
$$

$$
\left.S_{4}\right]
$$

Data model for complex event recognition

" Complex Event Recognition (CER) is the act of recognizing complex events in a stream of primitive events."

Input:

Output:

$$
\begin{array}{lll}
{\left[\begin{array}{lll}
\mathrm{B}_{0} & \mathrm{~S}_{2} & \mathrm{~S}_{4}
\end{array}\right]} \\
& {\left[\begin{array}{lll}
\mathrm{B}_{3} & \mathrm{~S}_{4}
\end{array}\right]}
\end{array}
$$

Data model for complex event recognition

" Complex Event Recognition (CER) is the act of recognizing complex events in a stream of primitive events."

Input:

Output:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\mathrm{B}_{0} & \mathrm{~S}_{2} & \mathrm{~S}_{4}
\end{array}\right]} \\
& \\
& \quad\left[\begin{array}{lll}
\mathrm{B} & \mathrm{~S}_{4}
\end{array}\right] \\
& \\
& \\
&
\end{aligned}
$$

Data model for complex event recognition

" Complex Event Recognition (CER) is the act of recognizing complex events in a stream of primitive events."

Input:

Output:

CER queries recognize complex events and extract them

Complex event logic (CEL)

Complex event logic (CEL)

CEL syntax

$$
\varphi:=R
$$

- R is an event type.

Complex event logic (CEL)

CEL syntax

$$
\varphi:=R|\varphi ; \varphi| \varphi \operatorname{OR} \varphi \mid \varphi+
$$

- R is an event type.

Complex event logic (CEL)

CEL syntax

$$
\varphi:=R|\varphi ; \varphi| \varphi \operatorname{OR} \varphi|\varphi+| \varphi \operatorname{AS} X
$$

- R is an event type.
- X is a variable.

Complex event logic (CEL)

CEL syntax

$$
\varphi:=R|\varphi ; \varphi| \varphi \operatorname{OR} \varphi|\varphi+|\varphi \operatorname{AS} X| \varphi \operatorname{FILTER} P(\bar{X})
$$

- R is an event type.
- X is a variable.
- $P(\bar{X})$ is a predicate over variables $\bar{X}=X_{1}, \ldots, X_{k}$.

Complex event logic (CEL)

CEL syntax

$$
\varphi:=R|\varphi ; \varphi| \varphi \operatorname{OR} \varphi|\varphi+|\varphi \operatorname{AS} X| \varphi \operatorname{FILTER} P(\bar{X})| \pi_{\bar{X}}(\varphi)
$$

- R is an event type.
- X is a variable.
- $P(\bar{X})$ is a predicate over variables $\bar{X}=X_{1}, \ldots, X_{k}$.

Complex event logic (CEL)

CEL syntax

$$
\varphi:=R|\varphi ; \varphi| \varphi \operatorname{OR} \varphi|\varphi+|\varphi \operatorname{AS} X| \varphi \operatorname{FILTER} P(\bar{X})| \pi_{\bar{X}}(\varphi)
$$

- R is an event type.
- X is a variable.
- $P(\bar{X})$ is a predicate over variables $\bar{X}=X_{1}, \ldots, X_{k}$.

Example of a CEL formula

$$
\varphi=(B ;(S+\operatorname{AS} X) ; B) \text { FILTER SameStock }(X)
$$

Complex event logic (CEL)

CEL syntax

$$
\varphi:=R|\varphi ; \varphi| \varphi \operatorname{OR} \varphi|\varphi+|\varphi \operatorname{AS} X| \varphi \operatorname{FILTER} P(\bar{X})| \pi_{\bar{X}}(\varphi)
$$

- R is an event type.
- X is a variable.
- $P(\bar{X})$ is a predicate over variables $\bar{X}=X_{1}, \ldots, X_{k}$.

Example of a CEL formula

$$
\varphi=(B ;(S+\operatorname{AS} X) ; B) \text { FILTER } \operatorname{SameStock}(X)
$$

Variables in CEL represent sets of events (i.e. complex events)

Complex event logic: semantics

Definition

Given a set of variables \mathcal{X}, a valuation V is a pair $([i, j], \mu)$ with $\mu: \mathcal{X} \rightarrow 2^{\mathbb{N}}$ a function that maps each variable $X \in \mathcal{X}$ to a finite set $\mu(X) \subseteq\{i, \ldots, j\}$.

Complex event logic: semantics

Definition

Given a set of variables \mathcal{X}, a valuation V is a pair $([i, j], \mu)$ with $\mu: \mathcal{X} \rightarrow 2^{\mathbb{N}}$ a function that maps each variable $X \in \mathcal{X}$ to a finite set $\mu(X) \subseteq\{i, \ldots, j\}$.

$$
\left.\begin{array}{llllllll}
& B_{0} & B_{1} & S_{2} & B_{3} & S_{4} & S_{5} & S_{6}
\end{array} B_{7}\right) B_{8}
$$

Complex event logic: semantics

Definition

Given a set of variables \mathcal{X}, a valuation V is a pair $([i, j], \mu)$ with $\mu: \mathcal{X} \rightarrow 2^{\mathbb{N}}$ a function that maps each variable $X \in \mathcal{X}$ to a finite set $\mu(X) \subseteq\{i, \ldots, j\}$.

$$
\begin{aligned}
& \begin{array}{lllllllllllllllll}
& B_{0} & B_{1} & S_{2} & B_{3} & S_{4} & S_{5} & S_{6} & B_{7} & B_{8} & B_{9} & \cdots
\end{array} \\
& {\left[\begin{array}{lll}
\mathrm{B}_{0} & \mathrm{~S}_{2} & \mathrm{~S}_{4} \\
X & \left.\begin{array}{r}
X, Y
\end{array}\right]
\end{array}\right.} \\
& {\left[\begin{array}{lll}
& B_{Y} & \mathrm{~S}_{4} \\
& \mathrm{~S}^{2}
\end{array}\right]}
\end{aligned}
$$

Complex event logic: semantics

Definition

Given a set of variables \mathcal{X}, a valuation V is a pair $([i, j], \mu)$ with $\mu: \mathcal{X} \rightarrow 2^{\mathbb{N}}$ a function that maps each variable $X \in \mathcal{X}$ to a finite set $\mu(X) \subseteq\{i, \ldots, j\}$.

Input:

Output:

$$
\begin{array}{ccc}
{\left[\begin{array}{|cc|}
\mathrm{B}_{0} & \mathrm{~S}_{2} \\
Z & \frac{\mathrm{~S}_{4}}{X}
\end{array}\right]} \\
& {\left[\begin{array}{lll}
X, Y \\
& \mathrm{~B}_{3} & \mathrm{~S}_{4} \\
\hline
\end{array}\right]}
\end{array}
$$

CEL auxiliary semantics (informally)

The valuation semantics of CEL formula φ is a function $\Pi \varphi \Perp$ that maps a stream \mathcal{S} to a set of valuations.

Complex event logic: semantics

Definition

Given a set of variables \mathcal{X}, a valuation V is a pair $([i, j], \mu)$ with $\mu: \mathcal{X} \rightarrow 2^{\mathbb{N}}$ a function that maps each variable $X \in \mathcal{X}$ to a finite set $\mu(X) \subseteq\{i, \ldots, j\}$.

Input:

Output:

CEL semantics

The complex event semantics [$\varphi \rrbracket$ of CEL formula φ is obtained from $\Pi \varphi \rrbracket$ by returning all events in the image of μ.

Complex event logic: semantics

Definition

Given a set of variables \mathcal{X}, a valuation V is a pair $([i, j], \mu)$ with $\mu: \mathcal{X} \rightarrow 2^{\mathbb{N}}$ a function that maps each variable $X \in \mathcal{X}$ to a finite set $\mu(X) \subseteq\{i, \ldots, j\}$.

Input:

Output:

CEL semantics

The complex event semantics [$\varphi \rrbracket$ of CEL formula φ is obtained from $\Pi \varphi \rrbracket$ by returning all events in the image of μ.

Complex event logic: semantics

$$
R \quad \varphi ; \varphi \quad \varphi \operatorname{OR} \varphi \quad \varphi+\quad \varphi \operatorname{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi)
$$

Complex event logic: semantics

$$
\begin{aligned}
& R \quad \varphi ; \varphi \quad \varphi \operatorname{OR} \varphi \quad \varphi+\quad \varphi \operatorname{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
& \Pi R \Perp(\mathcal{S})=\{V \mid V(\text { time })=[i, i] \wedge \operatorname{type}(\mathcal{S}[i])=R \\
& \wedge V(R)=\{i\} \wedge \forall X \neq R . V(X)=\varnothing\}
\end{aligned}
$$

Complex event logic: semantics

$$
\begin{aligned}
R \quad \varphi ; \varphi \quad \varphi \text { OR } \varphi \quad \varphi+\quad \varphi \operatorname{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
\pi R \Downarrow(\mathcal{S})=\{V \mid V(\text { time })=[i, i] \wedge \operatorname{type}(\mathcal{S}[i])=R \\
\wedge V(R)=\{i\} \wedge \forall X \neq R . V(X)=\varnothing\}
\end{aligned}
$$

Example: $\varphi=B$
$\Pi \varphi \rrbracket(\mathcal{S}):$

Complex event logic: semantics

$$
\begin{aligned}
R \quad \varphi ; \varphi \quad \varphi \text { OR } \varphi \quad \varphi+\quad \varphi \operatorname{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
\pi R \Downarrow(\mathcal{S})=\{V \mid V(\text { time })=[i, i] \wedge \operatorname{type}(\mathcal{S}[i])=R \\
\wedge V(R)=\{i\} \wedge \forall X \neq R . V(X)=\varnothing\}
\end{aligned}
$$

Example: $\varphi=B$

$\Pi \varphi \Perp(\mathcal{S}): \quad\left[\underset{B}{B_{0}}\right]$

Complex event logic: semantics

$$
\begin{aligned}
R \quad \varphi ; \varphi \quad \varphi \text { OR } \varphi \quad \varphi+\quad \varphi \operatorname{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
\pi R \|(\mathcal{S})=\{V \mid V(\text { time })=[i, i] \wedge \operatorname{type}(\mathcal{S}[i])=R \\
\wedge V(R)=\{i\} \wedge \forall X \neq R . V(X)=\varnothing\}
\end{aligned}
$$

Example: $\varphi=B$
$\Pi \varphi \Perp(\mathcal{S}): \quad\left[\underset{B}{B_{0}}\right]$

$$
\left[\frac{B_{1}}{B}\right]
$$

Complex event logic: semantics

$$
\begin{aligned}
R \quad \varphi ; \varphi \quad \varphi \operatorname{OR} \varphi \quad \varphi+\quad \varphi \operatorname{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
\pi R \Perp(\mathcal{S})=\{V \mid V(\text { time })=[i, i] \wedge \operatorname{type}(\mathcal{S}[i])=R \\
\wedge V(R)=\{i\} \wedge \forall X \neq R . V(X)=\varnothing\}
\end{aligned}
$$

Example: $\varphi=B$

$\Pi \varphi \Downarrow(\mathcal{S}): \quad\left[\underset{B}{B_{0}}\right]$

$$
\left[\begin{array}{c}
B_{1} \\
B
\end{array}\right]
$$

$$
[\underbrace{B_{3}}_{B}]
$$

Complex event logic: semantics

$$
R \quad \varphi ; \varphi \quad \varphi \mathrm{OR} \varphi \quad \varphi^{+} \quad \varphi \mathrm{AS} X \quad \varphi \text { FILTER } P(\bar{X}) \quad \pi_{\bar{X}}(\varphi)
$$

Complex event logic: semantics

$$
\begin{aligned}
& R \int \varphi ; \varphi \quad \varphi \operatorname{OR} \varphi \quad \varphi+\quad \varphi \operatorname{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
& \Pi \varphi_{1} ; \varphi_{2} \Perp(\mathcal{S})=\left\{V \mid \text { there exist } V_{1} \in \Pi \varphi_{1} \Perp(\mathcal{S}), V_{2} \in \Pi \varphi_{2} \Perp(\mathcal{S})\right.
\end{aligned}
$$

Complex event logic: semantics

$$
\begin{gathered}
R \backsim \varphi ; \varphi \operatorname{OR} \varphi \quad \varphi_{+} \varphi \mathrm{AS} X \quad \varphi \text { FILTER } P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
\Pi \varphi_{1} ; \varphi_{2} \Perp(\mathcal{S})=\left\{V \mid \text { there exist } V_{1} \in \Pi \varphi_{1} \Perp(\mathcal{S}), V_{2} \in \Pi \varphi_{2} \Perp(\mathcal{S}) \text { s.t. } V_{1} \text { (end }\right)<V_{2} \text { (start) }
\end{gathered}
$$

Complex event logic: semantics

$$
\begin{gathered}
R \quad \varphi ; \varphi \quad \varphi \mathrm{OR} \varphi \quad \varphi+\quad \varphi \operatorname{AS} X \quad \varphi \text { FILTER } P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
\pi \varphi_{1} ; \varphi_{2} \rrbracket(\mathcal{S})=\left\{V \mid \text { there exist } V_{1} \in \Pi \varphi_{1} \rrbracket(\mathcal{S}), V_{2} \in \Pi \varphi_{2} \rrbracket(\mathcal{S}) \text { s.t. } V_{1}(\text { end })<V_{2}(\text { start })\right. \\
\wedge V(\text { time })=\left[V_{1}(\text { start }), V_{2}(\text { end })\right]
\end{gathered}
$$

Complex event logic: semantics

$$
\begin{gathered}
R \quad \varphi ; \varphi \quad \varphi \mathrm{OR} \varphi \quad \varphi+\quad \varphi \operatorname{AS} X \quad \varphi \text { FILTER } P(\bar{X}) \quad \pi_{\bar{X}(\varphi)} \\
\Pi \varphi_{1} ; \varphi_{2} \rrbracket(\mathcal{S})=\left\{V \mid \text { there exist } V_{1} \in \Pi \varphi_{1} \rrbracket(\mathcal{S}), V_{2} \in \Pi \varphi_{2} \|(\mathcal{S}) \text { s.t. } V_{1}(\text { end })<V_{2}(\text { start })\right. \\
\\
\wedge V(\text { time })=\left[V_{1}(\text { start }), V_{2}(\text { end })\right] \\
\\
\left.\wedge \forall X . V(X)=V_{1}(X) \cup V_{2}(X)\right\}
\end{gathered}
$$

Complex event logic: semantics

$R \quad \varphi ; \varphi \quad \varphi \operatorname{OR} \varphi \quad \varphi^{+} \quad \varphi \operatorname{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi)$

$$
\begin{gathered}
\Pi \varphi_{1} ; \varphi_{2} \Perp(\mathcal{S})=\{V \mid \\
\text { there exist } V_{1} \in \Pi \varphi_{1} \rrbracket(\mathcal{S}), V_{2} \in \Pi \varphi_{2} \Perp(\mathcal{S}) \text { s.t. } V_{1}(\text { end })<V_{2}(\text { start }) \\
\\
\wedge V(\text { time })=\left[V_{1}(\text { start }), V_{2}(\text { end })\right] \\
\\
\left.\wedge \forall X . V(X)=V_{1}(X) \cup V_{2}(X)\right\}
\end{gathered}
$$

Example: $\varphi=B ; S$
$\Pi \varphi \rrbracket(\mathcal{S}):$

Complex event logic: semantics

$R \quad \varphi ; \varphi \quad \varphi \operatorname{OR} \varphi \quad \varphi+\quad \varphi \operatorname{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi)$

$$
\begin{gathered}
\Pi \varphi_{1} ; \varphi_{2} \Perp(\mathcal{S})=\{V \mid \\
\text { there exist } V_{1} \in \Pi \varphi_{1} \rrbracket(\mathcal{S}), V_{2} \in \Pi \varphi_{2} \Perp(\mathcal{S}) \text { s.t. } V_{1}(\text { end })<V_{2}(\text { start }) \\
\\
\wedge V(\text { time })=\left[V_{1}(\text { start }), V_{2}(\text { end })\right] \\
\\
\left.\wedge \forall X . V(X)=V_{1}(X) \cup V_{2}(X)\right\}
\end{gathered}
$$

Example: $\varphi=B ; S$

$\Pi \varphi \Perp(\mathcal{S}): \begin{array}{cc}{\left[\begin{array}{cc}B_{0} & S_{2} \\ B_{B}\end{array}\right]}\end{array}$

Complex event logic: semantics
$R \quad \varphi ; \varphi \quad \varphi \operatorname{OR} \varphi \quad \varphi^{+} \quad \varphi \operatorname{AS} X \quad \varphi$ FILTER $P(\bar{X}) \quad \pi_{\bar{X}}(\varphi)$

$$
\begin{aligned}
\Pi \varphi_{1} ; \varphi_{2} \Perp(\mathcal{S})=\{V \mid & \text { there exist } V_{1} \in \Pi \varphi_{1} \Perp(\mathcal{S}), V_{2} \in \Pi \varphi_{2} \Downarrow(\mathcal{S}) \text { s.t. } V_{1}(\text { end })<V_{2}(\text { start }) \\
& \wedge V(\text { time })=\left[V_{1}(\text { start }), V_{2}(\text { end })\right] \\
& \left.\wedge \forall X . V(X)=V_{1}(X) \cup V_{2}(X)\right\}
\end{aligned}
$$

Example: $\varphi=B ; S$
$\Pi \varphi \Perp(\mathcal{S}): \begin{array}{cc}{\left[\begin{array}{cc}B_{0} & S_{2} \\ B_{B} & \\ B_{0}\end{array}\right]}\end{array}$

$$
\left[\begin{array}{ccc}
B_{B}^{B} & 5 & S_{S}^{S}
\end{array}\right]
$$

Complex event logic: semantics

$R \quad \varphi ; \varphi \quad \varphi \operatorname{OR} \varphi \quad \varphi+\quad \varphi \operatorname{AS} X \quad \varphi$ FILTER $P(\bar{X}) \quad \pi_{\bar{X}}(\varphi)$

$$
\begin{gathered}
\Pi \varphi_{1} ; \varphi_{2} \Perp(\mathcal{S})=\{V \mid \\
\text { there exist } V_{1} \in \Pi \varphi_{1} \rrbracket(\mathcal{S}), V_{2} \in \Pi \varphi_{2} \Perp(\mathcal{S}) \text { s.t. } V_{1}(\text { end })<V_{2}(\text { start }) \\
\\
\wedge V(\text { time })=\left[V_{1}(\text { start }), V_{2}(\text { end })\right] \\
\\
\left.\wedge \forall X . V(X)=V_{1}(X) \cup V_{2}(X)\right\}
\end{gathered}
$$

Example: $\varphi=B ; S$
$\Pi \varphi \Perp(\mathcal{S}): \begin{array}{cc}{\left[\begin{array}{cc}B_{0} & S_{2} \\ B_{B} & \\ B_{0}\end{array}\right]}\end{array}$

$$
\left.\begin{array}{l}
{\left[\begin{array}{cc}
\mathrm{B}_{0} & \mathrm{~S}_{4} \\
B & \frac{S}{S}
\end{array}\right]} \\
\quad\left[\begin{array}{cc}
\mathrm{S}_{4} \\
\mathrm{~B}_{1}
\end{array}\right. \\
\end{array}\right]
$$

Complex event logic: semantics

$$
\begin{array}{llllll}
R & \varphi ; \varphi & \varphi \mathrm{OR} \varphi & \varphi+\quad \varphi \operatorname{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi)
\end{array}
$$

Complex event logic: semantics

$$
\begin{aligned}
& R \quad \varphi ; \varphi \quad \varphi \mathrm{OR} \varphi \quad \varphi+\quad \varphi \mathrm{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
& \Pi \varphi_{1} \mathrm{OR} \varphi_{2} \Downarrow(\mathcal{S})=\Pi \varphi_{1} \rrbracket(\mathcal{S}) \cup \Pi \varphi_{2} \Downarrow(\mathcal{S})
\end{aligned}
$$

Complex event logic: semantics

$$
\begin{array}{llllll}
R & \varphi ; \varphi & \varphi \mathrm{OR} \varphi & \varphi^{+} & \varphi \mathrm{AS} X \quad \varphi \text { FILTER } P(\bar{X}) \quad \pi_{\bar{X}}(\varphi)
\end{array}
$$

Complex event logic: semantics

$$
\begin{array}{r}
R \quad \varphi ; \varphi \quad \varphi \mathrm{OR} \varphi \quad \varphi+\varphi \operatorname{AS} X \quad \varphi \text { FILTER } P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
\pi \varphi+ل(\mathcal{S})=\bigcup_{k=1}^{\infty} \Pi \varphi^{k} \Downarrow(\mathcal{S}) \text { where } \varphi^{k}=\varphi ; \cdots ; \varphi \text { k-times }
\end{array}
$$

Complex event logic: semantics

$$
\begin{array}{r}
R \quad \varphi ; \varphi \quad \varphi \mathrm{OR} \varphi \quad \varphi^{+} \varphi \operatorname{AS} X \quad \varphi \text { FILTER } P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
\pi \varphi+\Perp(\mathcal{S})=\bigcup_{k=1}^{\infty} \pi \varphi^{k} \Perp(\mathcal{S}) \text { where } \varphi^{k}=\varphi ; \cdots ; \varphi \text { k-times }
\end{array}
$$

Example: $\varphi=B ; S+; B$
$\Pi \varphi \rrbracket(\mathcal{S}):$

Complex event logic: semantics

$$
\begin{array}{r}
R \quad \varphi ; \varphi \quad \varphi \operatorname{OR} \varphi \quad \varphi+\varphi \operatorname{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
\pi \varphi+ل(\mathcal{S})=\bigcup_{k=1}^{\infty} \llbracket \varphi^{k} ل(\mathcal{S}) \text { where } \varphi^{k}=\varphi ; \cdots ; \varphi k \text {-times }
\end{array}
$$

Example: $\varphi=B ; S+; B$
$\Pi \varphi \Perp(\mathcal{S}): \quad\left[\begin{array}{lll}\mathrm{B}_{0} & {\underset{S}{\mathrm{~S}}}_{\mathrm{S}} \quad \underbrace{\mathrm{B}_{3}}_{B}\end{array}\right]$

Complex event logic: semantics

$$
\begin{array}{r}
R \quad \varphi ; \varphi \quad \varphi \operatorname{OR} \varphi \quad \varphi+\varphi \operatorname{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
\pi \varphi+ل(\mathcal{S})=\bigcup_{k=1}^{\infty} \llbracket \varphi^{k} ل(\mathcal{S}) \text { where } \varphi^{k}=\varphi ; \cdots ; \varphi k \text {-times }
\end{array}
$$

Example: $\varphi=B ; S+; B$
$\Pi \varphi \Perp(\mathcal{S}): \quad \begin{array}{lll}\mathrm{B}_{0} & \mathrm{~S}_{2} & \mathrm{~B}_{3} \\ \frac{B}{B} & \left.\begin{array}{ll}\mathrm{B}\end{array}\right]\end{array}$

$$
\left[\begin{array}{llllllll}
\underbrace{B}_{B} & B_{0}^{B} & S_{2} & & S_{S}^{S_{4}} & \mathrm{~S}_{5} & \mathrm{~S}_{6} & \underbrace{\mathrm{~B}_{7}}_{S}
\end{array}\right]
$$

Complex event logic: semantics

$$
\begin{array}{r}
R \quad \varphi ; \varphi \quad \varphi \mathrm{OR} \varphi \quad \varphi+\quad \varphi \mathrm{AS} X \quad \varphi \text { FILTER } P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
\pi \varphi+ل(\mathcal{S})=\bigcup_{k=1}^{\infty} \pi \varphi^{k} \Downarrow(\mathcal{S}) \text { where } \varphi^{k}=\varphi ; \cdots ; \varphi \text { k-times }
\end{array}
$$

Example: $\varphi=B ; S+; B$
$\Pi \varphi \Perp(\mathcal{S}): \quad\left[\begin{array}{ccc}B_{0} & S_{2} & B_{3} \\ B_{B} & \underset{B}{B}\end{array}\right]$

Complex event logic: semantics

$$
R \quad \varphi ; \varphi \quad \varphi \operatorname{OR} \varphi \quad \varphi_{+} \quad \varphi \operatorname{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi)
$$

Complex event logic: semantics

$$
\begin{aligned}
R \quad \varphi ; \varphi \quad \varphi \mathrm{OR} \varphi \quad \varphi+ & \varphi \operatorname{AS} X \quad \varphi \text { FILTER } P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
\Pi \varphi \mathrm{AS} X \|(\mathcal{S})=\{V \mid & \exists V^{\prime} \in \Pi \varphi \|(\mathcal{S}) . V(\text { time })=V^{\prime}(\text { time }) \\
& \wedge V(X)=\cup_{Y} V^{\prime}(Y) \\
& \left.\wedge \forall Z \neq X . V(Z)=V^{\prime}(Z)\right\}
\end{aligned}
$$

Complex event logic: semantics

$$
\begin{aligned}
R \quad \varphi ; \varphi \quad \varphi \mathrm{OR} \varphi \quad \varphi^{+} & \varphi \operatorname{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
\Pi \varphi \mathrm{AS} X \Perp(\mathcal{S})=\{V \mid & \exists V^{\prime} \in \Pi \varphi \|(\mathcal{S}) . V(\text { time })=V^{\prime}(\text { time }) \\
& \wedge V(X)=\cup_{Y} V^{\prime}(Y) \\
& \left.\wedge \forall Z \neq X . V(Z)=V^{\prime}(Z)\right\}
\end{aligned}
$$

Example: $\varphi=\left(B ; S_{+}\right) \quad ; B$
$\left.\Pi \varphi \Downarrow(\mathcal{S}): \quad \begin{array}{lll}\mathrm{B}_{0} & \mathrm{~S}_{2} & B_{3} \\ B_{B} & \mathrm{~B}_{\mathrm{B}}\end{array}\right]$

$$
\begin{array}{lllllll}
{\left[\begin{array}{llllll}
B & S & B & B_{0} & \mathrm{~S}_{2} & \\
\mathrm{~B}_{0} & \mathrm{~S}_{5} & \mathrm{~S}_{6} & \mathrm{~B}_{7}
\end{array}\right]} \\
B & S & & S & S & S & B \\
{\left[\begin{array}{lllll}
\mathrm{B}_{0} & \mathrm{~S}_{2} & & & \mathrm{~S}_{5} \\
\hline & & & B_{7}
\end{array}\right]}
\end{array}
$$

Complex event logic: semantics

$$
\begin{aligned}
R \quad \varphi ; \varphi \quad \varphi \mathrm{OR} \varphi \quad \varphi^{+} & \varphi \operatorname{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
\Pi \varphi \mathrm{AS} X \|(\mathcal{S})=\{V \mid & \exists V^{\prime} \in \Pi \varphi \|(\mathcal{S}) . V(\text { time })=V^{\prime}(\text { time }) \\
& \wedge V(X)=\cup_{Y} V^{\prime}(Y) \\
& \left.\wedge \forall Z \neq X \cdot V(Z)=V^{\prime}(Z)\right\}
\end{aligned}
$$

Example: $\varphi=\left(B ; S_{+}\right)$AS $X ; B$
$\Pi \varphi \Downarrow(\mathcal{S}): \quad \begin{array}{lll}B_{0} & \mathrm{~S}_{2} & \mathrm{~B}_{3} \\ \mathrm{~B}_{0} & S_{S, x} & \left.\begin{array}{ll}B\end{array}\right]\end{array}$

$$
\left[\begin{array}{lllllll}
{\left[\begin{array}{lllll}
B, X & B_{0} & \mathrm{~S}_{2} & & \\
\mathrm{~S}_{4} & \mathrm{~S}_{5} & \mathrm{~S}_{6} & \mathrm{~B}_{7} \\
\hline B, X & S_{S, X} & & S, X & S, X \\
S, X & B \\
{\left[\begin{array}{llll}
\mathrm{B}_{0} & \mathrm{~S}_{2} & & \\
S, X & & & \mathrm{~S}_{5} \\
S, X & & \mathrm{~B}_{7}
\end{array}\right]}
\end{array}\right]}
\end{array}\right.
$$

Complex event logic: semantics

$$
\begin{array}{llllllll}
R & \varphi ; \varphi & \varphi \mathrm{OR} \varphi & \varphi^{+} & \varphi \operatorname{AS} X & \varphi \text { FILTER } P(\bar{X}) & \pi_{\bar{X}}(\varphi)
\end{array}
$$

Complex event logic: semantics

$$
\begin{array}{lllll|l}
R & \varphi ; \varphi & \varphi \operatorname{OR} \varphi & \varphi+\quad \varphi \operatorname{AS} X & \varphi \operatorname{FILTER} P(\bar{X}) & \pi_{\bar{x}}(\varphi)
\end{array}
$$

Definition

Consider universal predicates $P\left(X_{1}, \ldots X_{n}\right)$ of the form:

$$
P\left(X_{1}, \ldots X_{n}\right):=\forall t_{1} \in X_{1} \ldots \forall t_{n} \in X_{n} . P_{E}\left(t_{1}, \ldots, t_{n}\right)
$$

where $P_{E}\left(t_{1}, \ldots, t_{n}\right)$ is a first-order predicate over tuples.

Complex event logic: semantics

> | R | $\varphi ; \varphi$ | $\varphi \operatorname{OR} \varphi$ | $\varphi+\quad \varphi \operatorname{AS} X$ | $\varphi \operatorname{FILTER} P(\bar{X})$ | $\pi_{\bar{x}}(\varphi)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

Definition

Consider universal predicates $P\left(X_{1}, \ldots X_{n}\right)$ of the form:

$$
P\left(X_{1}, \ldots X_{n}\right):=\forall t_{1} \in X_{1} \ldots \forall t_{n} \in X_{n} . P_{E}\left(t_{1}, \ldots, t_{n}\right)
$$

where $P_{E}\left(t_{1}, \ldots, t_{n}\right)$ is a first-order predicate over tuples.

Examples

- Stock=a $(X):=\forall t \in X . t[$ stock $]=$ 'a'

Complex event logic: semantics

$$
\begin{array}{llll|l|l}
R & \varphi ; \varphi & \varphi \operatorname{OR} \varphi & \varphi+\quad \varphi \operatorname{AS} X & \varphi \operatorname{FILTER} P(\bar{X}) & \pi_{\bar{x}}(\varphi)
\end{array}
$$

Definition

Consider universal predicates $P\left(X_{1}, \ldots X_{n}\right)$ of the form:

$$
P\left(X_{1}, \ldots X_{n}\right):=\forall t_{1} \in X_{1} \ldots \forall t_{n} \in X_{n} . P_{E}\left(t_{1}, \ldots, t_{n}\right)
$$

where $P_{E}\left(t_{1}, \ldots, t_{n}\right)$ is a first-order predicate over tuples.

Examples

- Stock=a $(X):=\forall t \in X . t[$ stock $]=$ 'a'
- $\operatorname{SameStock}\left(X_{1}, X_{2}\right):=\forall t_{1} \in X_{1} . \forall t_{2} \in X_{2} . t_{1}[$ stock $]=t_{2}[$ stock $]$

Complex event logic: semantics

$$
\begin{array}{lllll|l}
R & \varphi ; \varphi & \varphi \operatorname{OR} \varphi & \varphi+\quad \varphi \operatorname{AS} X & \varphi \operatorname{FILTER} P(\bar{X}) & \pi_{\bar{X}}(\varphi)
\end{array}
$$

Definition

Consider universal predicates $P\left(X_{1}, \ldots X_{n}\right)$ of the form:

$$
P\left(X_{1}, \ldots X_{n}\right):=\forall t_{1} \in X_{1} \ldots \forall t_{n} \in X_{n} . P_{E}\left(t_{1}, \ldots, t_{n}\right)
$$

where $P_{E}\left(t_{1}, \ldots, t_{n}\right)$ is a first-order predicate over tuples.

Examples

- Stock=a $(X):=\forall t \in X . t[$ stock $]=$ 'a'
- $\operatorname{SameStock}\left(X_{1}, X_{2}\right):=\forall t_{1} \in X_{1} . \forall t_{2} \in X_{2} . t_{1}[$ stock $]=t_{2}[$ stock $]$

The definition of CEL considers any predicate over tuples of sets of events but we restrict to universal predicates to fit our purposes.

Complex event logic: semantics

$$
\begin{array}{llllllll}
R & \varphi ; \varphi & \varphi \mathrm{OR} \varphi & \varphi^{+} & \varphi \operatorname{AS} X & \varphi \text { FILTER } P(\bar{X}) & \pi_{\bar{X}}(\varphi)
\end{array}
$$

Complex event logic: semantics
$R \quad \varphi ; \varphi \quad \varphi \operatorname{OR} \varphi \quad \varphi^{+} \quad \varphi \operatorname{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{x}}(\varphi)$
$\Pi \varphi$ FILTER $P(\bar{X}) \Perp(\mathcal{S})=\{V \mid V \in \Pi \varphi \Perp(\mathcal{S}) \wedge V(\bar{X}) \in P\}$

Complex event logic: semantics

$$
\begin{array}{r}
R \quad \varphi ; \varphi \quad \varphi \operatorname{OR} \varphi \quad \varphi+\quad \varphi \operatorname{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
\pi \varphi \text { FILTER } P(\bar{X}) \rrbracket(\mathcal{S})=\{V \mid V \in \Pi \varphi \Downarrow(\mathcal{S}) \wedge V(\bar{X}) \in P\}
\end{array}
$$

Example: $\varphi=((B ; S+)$ AS $X) ; B)$
$\Pi \varphi \rrbracket(\mathcal{S}):$

Complex event logic: semantics

$$
\begin{gathered}
R \quad \varphi ; \varphi \quad \varphi \operatorname{OR} \varphi \quad \varphi^{+} \quad \varphi \operatorname{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
\pi \varphi \operatorname{FILTER} P(\bar{X}) \rrbracket(\mathcal{S})=\{V \mid V \in \Pi \varphi \rrbracket(\mathcal{S}) \wedge V(\bar{X}) \in P\}
\end{gathered}
$$

Example: $\varphi=\left(\left(B ; S_{+}\right)\right.$AS $\left.\left.X\right) ; B\right)$

Complex event logic: semantics

$$
\begin{array}{r}
R \quad \varphi ; \varphi \quad \varphi \operatorname{OR} \varphi \quad \varphi^{+} \quad \varphi \operatorname{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
\pi \varphi \operatorname{FILTER} P(\bar{X}) \rrbracket(\mathcal{S})=\{V \mid V \in \Pi \varphi \rrbracket(\mathcal{S}) \wedge V(\bar{X}) \in P\}
\end{array}
$$

Example: $\varphi=((B ; S+)$ AS $X) ; B)$ FILTER Stock=a (X)

Complex event logic: semantics

$$
\begin{array}{lllllll}
R & \varphi ; \varphi & \varphi \text { OR } \varphi & \varphi^{+} & \varphi \operatorname{AS} X & \varphi \text { FILTER } P(\bar{X}) & \pi_{\bar{X}}(\varphi)
\end{array}
$$

Complex event logic: semantics

$$
\begin{aligned}
R \quad \varphi ; \varphi \quad \varphi \text { OR } \varphi & \varphi+\quad \varphi \operatorname{AS} X \quad \varphi \text { FILTER } P(\bar{X}) \\
\pi \pi_{\bar{X}}(\varphi) \|(\mathcal{S})=\{V \mid & \left.\exists V^{\prime} \in \Pi \varphi \|(\mathcal{S}) . V(\text { time })=V^{\prime} \text { (time }\right) \\
& \wedge \forall Y \in \bar{X} \cdot V(Y)=V^{\prime}(Y) \\
& \wedge \forall Y \notin \bar{X} \cdot V(Y)=\varnothing\}
\end{aligned}
$$

Complex event logic: semantics

$$
\begin{aligned}
R & \varphi ; \varphi \quad \varphi \mathrm{OR} \varphi
\end{aligned} \quad \varphi+\quad \varphi \mathrm{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{x}}(\varphi)
$$

Example: $\varphi=((B ; S+)$ AS $X) ; B)$ FILTER Stock $=\mathrm{a}(X)$

$$
\left.\mathcal{S}: \quad \mathrm{B}(\mathrm{a})_{0} \quad \mathrm{~B}(\mathrm{~b})_{1} \quad \mathrm{~S}(\mathrm{a})_{2} \quad \mathrm{~B}(\mathrm{c})_{3} \quad \mathrm{~S}(\mathrm{c})_{4} \quad \mathrm{~S}(\mathrm{a})_{5} \quad \mathrm{~S}(\mathrm{~b})_{6} \quad \mathrm{~B}(\mathrm{a})_{7} \quad \mathrm{~B}(\mathrm{~b})_{8} \quad \mathrm{~B}(\mathrm{c})_{9}\right) \cdots
$$

$\Pi \varphi \Perp(\mathcal{S}):$

Complex event logic: semantics

$$
\begin{aligned}
& R \quad \varphi ; \varphi \quad \varphi \mathrm{OR} \varphi \varphi+\quad \varphi \operatorname{ASX} \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{X}}(\varphi) \\
& \pi \pi_{\bar{X}}(\varphi) \sharp(\mathcal{S})=\left\{\begin{aligned}
V \mid & \exists V^{\prime} \in \Pi \varphi \|(\mathcal{S}) . V(\text { time })=V^{\prime}(\text { time }) \\
& \wedge \forall Y \in \bar{X} \cdot V(Y)=V^{\prime}(Y) \\
& \wedge \forall Y \notin \bar{X} \cdot V(Y)=\varnothing\}
\end{aligned}\right.
\end{aligned}
$$

Example: $\varphi=((B ; S+)$ AS $X) ; B)$ FILTER Stock $=\mathrm{a}(X)$

Complex event logic: semantics

$$
\begin{aligned}
R & \varphi ; \varphi \quad \varphi \mathrm{OR} \varphi
\end{aligned} \quad \varphi+\quad \varphi \mathrm{AS} X \quad \varphi \operatorname{FILTER} P(\bar{X}) \quad \pi_{\bar{x}}(\varphi)
$$

Example: $\varphi=\pi_{X}[((B ; S+)$ AS $X) ; B)$ FILTER Stock $\left.=\mathrm{a}(X)\right]$

$$
\left.\mathcal{S}: \quad \mathrm{B}(\mathrm{a})_{0} \quad \mathrm{~B}(\mathrm{~b})_{1} \quad \mathrm{~S}(\mathrm{a})_{2} \quad \mathrm{~B}(\mathrm{c})_{3} \quad \mathrm{~S}(\mathrm{c})_{4} \quad \mathrm{~S}(\mathrm{a})_{5} \quad \mathrm{~S}(\mathrm{~b})_{6} \quad \mathrm{~B}(\mathrm{a})_{7} \quad \mathrm{~B}(\mathrm{~b})_{8} \quad \mathrm{~B}(\mathrm{c})_{9}\right) \cdots
$$

$\left.\Pi \varphi \|(\mathcal{S}): \begin{array}{ccc}{\left[\begin{array}{ll}\mathrm{B}(\mathrm{a})_{0} & \mathrm{~S}(\mathrm{a})_{2} \\ x & \left.\mathrm{~S}_{\mathrm{a}} \mathrm{a}\right)_{5}\end{array}\right.} \\ x\end{array}\right]$

Complex event logic: semantics

CEL semantics (final)

The output of a CEL formula φ over a stream \mathcal{S} at position n is defined as:

$$
\llbracket \varphi \rrbracket_{n}(\mathcal{S})=\left\{\left(V(\text { time }), \bigcup_{X} V(X)\right) \mid V \in \Pi \varphi \Perp(\mathcal{S}), V(\text { end })=n\right\}
$$

Complex event logic: semantics

CEL semantics (final)

The output of a CEL formula φ over a stream \mathcal{S} at position n is defined as:

$$
\llbracket \varphi \rrbracket_{n}(\mathcal{S})=\left\{\left(V(\text { time }), \bigcup_{X} V(X)\right) \mid V \in \Pi \varphi \rrbracket(\mathcal{S}), V(\text { end })=n\right\}
$$

All complex events that satisfy the formula are given as output

Selection strategies

CER systems includes operations to filter complex events:
Selection strategies
usually defined by an algorithm.

Selection strategies

CER systems includes operations to filter complex events:

Selection strategies

usually defined by an algorithm.

Example: skip-till-next-match in SASE

"a further relaxation is to remove the contiguity requirements:
all irrelevant events will be skipped until the next relevant event is read." [1]
[1] D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman
"On supporting Kleene closure over event streams", ICDE 2008.

Selection strategies

CER systems includes operations to filter complex events:

Selection strategies

usually defined by an algorithm.

Example: skip-till-next-match in SASE

"a further relaxation is to remove the contiguity requirements:
all irrelevant events will be skipped until the next relevant event is read." [1]

In CEL we declaratively formalize existing selection strategies, and propose new ones [2].

[^0]
Outline

A logic for CER

An automaton model for CER

Evaluation algorithm

The CORE complex event recognition engine

Open questions

Complex event automata

Let P_{1} be the set of all unary predicates over tuples.

Complex event automata

Let P_{1} be the set of all unary predicates over tuples.

Definition

A complex event automata (CEA) is a tuple $\mathcal{A}=(Q, \Delta, I, F)$ where:

1. Q is a finite set of states,
2. I and F are the sets of initial and final states, and
3. $\Delta \subseteq Q \times \mathrm{P}_{1} \times\{\bullet, \circ\} \times Q$ is the transition relation.

Complex event automata: semantics

$$
\begin{aligned}
& \rightarrow q_{0} \xrightarrow{\mathrm{P}_{\mathrm{B}} \mid \bullet} \\
& \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\} \\
& \mathcal{S}: \quad B_{0} \quad B_{1} \quad S_{2} \quad B_{3} \quad S_{4} \quad S_{5} \quad S_{6} \quad B_{7} \quad B_{8} \quad B_{9} \quad \cdots
\end{aligned}
$$

Complex event automata: semantics

$$
\begin{aligned}
& \rightarrow q_{0} \xrightarrow{\mathrm{P}_{\mathrm{B}} \mid \bullet} \\
& \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\} \\
& \mathcal{S}: \quad B_{0} \quad B_{1} \quad S_{2} \quad B_{3} \quad S_{4} \quad S_{5} \quad S_{6} \quad B_{7} \quad B_{8} \quad B_{9} \quad \cdots
\end{aligned}
$$

Complex event automata: semantics

$$
\begin{aligned}
& \rightarrow q_{0} \xrightarrow{\mathrm{P}_{\mathrm{B}} \mid \bullet} \\
& \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\} \\
& \mathcal{S}: \quad \mathrm{q}_{0} \quad \mathrm{~B}_{0} \quad \mathrm{~B}_{1} \quad \mathrm{~S}_{2} \quad \mathrm{~B}_{3} \quad \mathrm{~S}_{4} \quad \mathrm{~S}_{5} \quad \mathrm{~S}_{6} \mathrm{~B}_{7} \quad \mathrm{~B}_{8} \quad \mathrm{~B}_{9} \cdots
\end{aligned}
$$

Complex event automata: semantics

$$
\begin{array}{ll}
\rightarrow & \mathrm{P}_{0} \\
\mathcal{P}: \quad \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\} \\
& \mathrm{B}_{0} \\
\mathrm{~B}_{1} & \mathrm{~S}_{2} \\
\mathrm{~B}_{3} & \mathrm{~S}_{4} \\
\mathrm{~S}_{5} & \mathrm{~S}_{6} \\
\mathrm{~B}_{7} & \mathrm{~B}_{8} \\
\mathrm{~B}_{9} & \cdots
\end{array}
$$

Complex event automata: semantics

$$
\begin{aligned}
& \rightarrow q_{0} \xrightarrow{\mathrm{P}_{\mathrm{B}} \mid \bullet} \\
& \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\} \\
& \mathcal{S}: \quad \begin{array}{lllllllll}
B_{0} & B_{1} & S_{2} & B_{3} & S_{4} & S_{5} & S_{6} & B_{7} & B_{8} \\
B_{9} & \cdots
\end{array}
\end{aligned}
$$

Complex event automata: semantics

$$
\begin{aligned}
& \rightarrow q_{0} \xrightarrow{\mathrm{P}_{\mathrm{B}} \mid \bullet} \\
& \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\} \\
& \mathcal{S}: \quad \underset{\bullet}{B_{0}} \underset{\bullet}{B_{1}} \underset{\bullet}{\mathrm{~S}_{2}} \mathrm{~B}_{3} \quad \mathrm{~S}_{4} \quad \mathrm{~S}_{5} \quad \mathrm{~S}_{6} \quad \mathrm{~B}_{7} \quad \mathrm{~B}_{8} \quad \mathrm{~B}_{9} \cdots
\end{aligned}
$$

Complex event automata: semantics

$$
\begin{aligned}
\rightarrow & \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\} \\
\mathcal{S}: \quad \mathrm{B}_{0} \mathrm{~B}_{1} \mathrm{P}_{\mathrm{B}} \mid \bullet & \mathrm{S}_{2} \\
\mathrm{~B}_{3} & \mathrm{~S}_{4} \\
\mathrm{~S}_{5} & \mathrm{~S}_{6} \\
\mathrm{~B}_{7} & \mathrm{~B}_{8} \\
\mathrm{~B}_{9} & \cdots
\end{aligned}
$$

Complex event automata: semantics

$$
\left.\begin{array}{ll}
\\
\mathcal{S}: \quad \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\} \\
{[\mathcal{A}](\mathcal{S}): \quad \mathrm{B}_{0}} & \mathrm{~B}_{1} \\
\mathrm{~B}_{0} & \bullet \\
\mathrm{~B}_{2} & \mathrm{~B}_{3} \\
\mathrm{P}_{4} & \mathrm{~S}_{4}
\end{array}\right]
$$

Complex event automata: semantics

$$
\begin{array}{lll}
\\
& \rightarrow \quad \mathrm{P}_{0} & \mathrm{P}_{\mathrm{B}} \mid \cdot
\end{array}
$$

Complex event automata: semantics

$$
\begin{array}{lll}
\quad \rightarrow & \mathrm{q}_{0} & \mathrm{P}_{\mathrm{B}} \mid \cdot
\end{array}
$$

Complex event automata: semantics

$$
\begin{aligned}
& \rightarrow q_{0} \xrightarrow{\mathrm{P}_{\mathrm{B}} \mid \bullet} \\
& \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\} \\
& \mathcal{S}: \quad \begin{array}{llllllllllllll}
B_{0} & \mathrm{~B}_{1} & \mathrm{~S}_{2} & \mathrm{~B}_{3} & \mathrm{~S}_{4} & \mathrm{~S}_{5} & \mathrm{~S}_{6} & \mathrm{~B}_{7} & \mathrm{~B}_{8} & \mathrm{~B}_{9} & \cdots
\end{array} \\
& {\left[\mathcal{A} \rrbracket(\mathcal{S}): \quad\left[\begin{array}{ll}
\mathrm{B}_{0} & \mathrm{~S}_{2}
\end{array}\right]\right.}
\end{aligned}
$$

Complex event automata: semantics

$$
\begin{aligned}
& \rightarrow q_{0} \xrightarrow{\mathrm{P}_{\mathrm{B}} \mid \bullet} \\
& \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\} \\
& \mathcal{S}: \quad \begin{array}{lllllllllllllll}
B_{0} & B_{1} & S_{2} & B_{3} & S_{4} & S_{5} & S_{6} & B_{7} & B_{8} & B_{9} & \cdots
\end{array} \\
& \llbracket \mathcal{A} \rrbracket(\mathcal{S}): \quad\left[\begin{array}{ll}
\mathrm{B}_{0} & \mathrm{~S}_{2}
\end{array}\right]
\end{aligned}
$$

Complex event automata: semantics

$$
\begin{aligned}
& \rightarrow q_{0} \xrightarrow{\mathrm{P}_{\mathrm{B}} \mid \bullet} \\
& \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\mathcal{A} \rrbracket(\mathcal{S}): \quad\left[\begin{array}{ll}
\mathrm{B}_{0} & \mathrm{~S}_{2}
\end{array}\right]\right.}
\end{aligned}
$$

Complex event automata: semantics

$$
\left.\begin{array}{ll}
& \rightarrow q_{0} \\
\mathcal{P}: \quad \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\} \\
{\left[\mathcal{A} \rrbracket(\mathcal{S}): \quad\left[\mathrm{B}_{1}\right.\right.} & \mathrm{B}_{2} \\
\mathrm{~B}_{0} & \mathrm{~B}_{3} \\
\mathrm{~B}_{0} & \mathrm{~S}_{4} \\
\mathrm{~S}_{2}
\end{array}\right]
$$

Complex event automata: semantics

$$
\begin{aligned}
& \rightarrow q_{0} \xrightarrow{\mathrm{P}_{\mathrm{B}} \mid \bullet} \\
& \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\} \\
& \mathcal{S}: \quad \underbrace{B_{0}}_{\bullet} \underset{0}{B_{1}} \underset{0}{S_{2}} \underbrace{B_{3}}_{0} S_{\bullet}^{S_{4}} S_{5} \quad S_{6} \quad B_{7} \quad B_{8} \quad \cdots \\
& {\left[\mathcal{A} \rrbracket(\mathcal{S}): \quad\left[\begin{array}{ll}
\mathrm{B}_{0} & \mathrm{~S}_{2}
\end{array}\right]\right.}
\end{aligned}
$$

Complex event automata: semantics

$$
\begin{aligned}
& \text { TRUE } \mid \circ \\
& \rightarrow q_{0} \xrightarrow{\mathrm{P}_{\mathrm{B}} \mid \bullet} \mathrm{q}_{1} \xrightarrow{\mathrm{P}_{\mathrm{S}} \mid \bullet} \\
& \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\} \\
& \mathcal{S}: \quad \begin{array}{lllllllllllllll}
\mathrm{B}_{0} & \mathrm{~B}_{1} & \mathrm{~S}_{2} & \mathrm{~B}_{3} & \mathrm{~S}_{4} & \mathrm{~S}_{5} & \mathrm{~S}_{6} & \mathrm{~B}_{7} & \mathrm{~B}_{8} & \mathrm{~B}_{9} & \cdots
\end{array} \\
& {\left[\mathcal{A} \rrbracket(\mathcal{S}): \quad\left[\begin{array}{ll}
\mathrm{B}_{0} & \mathrm{~S}_{2}
\end{array}\right]\right.} \\
& \text { [} \mathrm{B}_{0} \\
& \text { (54] }
\end{aligned}
$$

Complex event automata: semantics

$$
\begin{aligned}
& \text { TRUE } \mid \circ \\
& \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\} \\
& \mathcal{S}: \quad \mathrm{B}_{0} \mathrm{~B}_{1} \quad \mathrm{~S}_{2} \quad \mathrm{~B}_{3} \quad \mathrm{~S}_{4} \quad \mathrm{~S}_{5} \quad \mathrm{~S}_{6} \quad \mathrm{~B}_{7} \quad \mathrm{~B}_{8} \quad \mathrm{~B}_{9} \cdots \\
& {\left[\mathcal{A} \rrbracket(\mathcal{S}): \quad\left[\begin{array}{ll}
\mathrm{B}_{0} & \mathrm{~S}_{2}
\end{array}\right]\right.} \\
& \text { [} \mathrm{B}_{0} \\
& \text { (54] }
\end{aligned}
$$

Complex event automata: semantics

$$
\left.\begin{array}{ll}
& \rightarrow q_{0} \\
& \mathrm{P}_{\mathrm{B}}:=\{t \mid \text { type }(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \text { type }(t)=S\} \\
\mathcal{S}: & \mathrm{B}_{\mathrm{B}} \mid \bullet \\
{[\mathcal{A} \rrbracket(\mathcal{S}):} & {\left[\mathrm{B}_{1}\right.} \\
& {\left[\mathrm{S}_{2}\right.} \\
\mathrm{B}_{0} & \mathrm{~B}_{3} \\
\mathrm{~B}_{4} & \mathrm{~S}_{5}
\end{array}\right]
$$

Complex event automata: semantics

$$
\begin{aligned}
& \text { TRUE } \mid \text { 。 } \\
& \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\}
\end{aligned}
$$

$$
\begin{aligned}
& {[\mathcal{A}](\mathcal{S}): \quad\left[\begin{array}{ll}
\mathrm{B}_{0} & \mathrm{~S}_{2}
\end{array}\right]} \\
& \text { [B0] } \\
& \text { (54] }
\end{aligned}
$$

Complex event automata: semantics

$$
\begin{aligned}
& \text { TRUE } \mid \text { 。 } \\
& \rightarrow q^{\left(q_{0}\right.} \xrightarrow{\mathrm{P}_{\mathrm{B}} \mid \bullet} \\
& \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\} \\
& \mathcal{S}: \quad B_{0} \quad B_{1} \quad S_{2} \quad B_{3} \quad S_{4} \quad S_{5} \quad S_{6} \quad B_{7} \quad B_{8} \quad B_{9} \cdots \\
& \llbracket \mathcal{A} \rrbracket(\mathcal{S}): \quad\left[\begin{array}{ll}
\mathrm{B}_{0} & \mathrm{~S}_{2}
\end{array}\right] \\
& \text { [} \mathrm{B}_{0} \\
& \text { (54] }
\end{aligned}
$$

Complex event automata: semantics

$$
\begin{aligned}
& \rightarrow+\mathrm{q}_{0} \\
& \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\}
\end{aligned}
$$

Complex event automata: semantics

$$
\begin{aligned}
& \text { TRUE } \mid \circ \\
& \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\}
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \mathcal{A} \rrbracket(\mathcal{S}): \quad\left[\begin{array}{ll}
\mathrm{B}_{0} & \mathrm{~S}_{2}
\end{array}\right] \\
& {\left[\begin{array}{ll}
B_{0} & S_{4}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
\mathrm{B}_{1} & \mathrm{~S}_{2}
\end{array}\right]}
\end{aligned}
$$

Complex event automata: semantics

$$
\begin{aligned}
& \text { TRUE } \mid \circ \\
& \mathrm{P}_{\mathrm{B}}:=\{t \mid \operatorname{type}(t)=B\} \quad \mathrm{P}_{\mathrm{S}}:=\{t \mid \operatorname{type}(t)=S\} \\
& \mathcal{S}: \quad B_{B_{0}}^{B_{1}} \underset{q_{0}}{S_{2}} \times B_{3} \quad S_{4} \quad S_{5} \quad S_{6} \quad B_{7} \quad B_{8} \quad B_{9} \cdots \\
& {[\mathcal{A}](\mathcal{S}): \quad\left[\begin{array}{ll}
\mathrm{B}_{0} & \mathrm{~S}_{2}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
B_{0} & S_{4}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
\mathrm{B}_{1} & \mathrm{~S}_{2}
\end{array}\right]}
\end{aligned}
$$

From CEL to CEA?

From CEL to CEA?

Theorem

For every CEL-formula φ with unary predicate filters we can construct a CEA \mathcal{A} of size linear in φ s.t.

$$
\llbracket \varphi \rrbracket_{n}(\mathcal{S})=\llbracket \mathcal{A} \rrbracket_{n}(\mathcal{S}) \quad \text { for every stream } \mathcal{S} \text { and position } n
$$

From CEL to CEA?

Theorem

For every CEL-formula φ with unary predicate filters we can construct a CEA \mathcal{A} of size linear in φ s.t.

$$
\llbracket \varphi \rrbracket_{n}(\mathcal{S})=\llbracket \mathcal{A} \rrbracket_{n}(\mathcal{S}) \quad \text { for every stream } \mathcal{S} \text { and position } n
$$

- CEA form a model of the "regular fragment" of CER queries.

From CEL to CEA?

Theorem

For every CEL-formula φ with unary predicate filters we can construct a CEA \mathcal{A} of size linear in φ s.t.

$$
\llbracket \varphi \rrbracket_{n}(\mathcal{S})=\llbracket \mathcal{A} \rrbracket_{n}(\mathcal{S}) \quad \text { for every stream } \mathcal{S} \text { and position } n
$$

- CEA form a model of the "regular fragment" of CER queries.
- Selection strategies can be encoded in the automaton model, see [1].

From CEL to CEA?

Theorem

For every CEL-formula φ with unary predicate filters we can construct a CEA \mathcal{A} of size linear in φ s.t.

$$
\llbracket \varphi \rrbracket_{n}(\mathcal{S})=\llbracket \mathcal{A} \rrbracket_{n}(\mathcal{S}) \quad \text { for every stream } \mathcal{S} \text { and position } n
$$

- CEA form a model of the "regular fragment" of CER queries.
- Selection strategies can be encoded in the automaton model, see [1].
- CEL can be extended to capture the expressive power of CEA, see [1].

Outline

A logic for CERAn automaton model for CER
Evaluation algorithm
The CORE complex event recognition engine

The partial match problem in current engines

```
FROM StockMarketStream
```

(Written in SASE+ language)

The partial match problem in current engines

FROM
StockMarketStream
PATTERN
BUY b1, BUY b2, ... , BUY bk
WITHIN
RETURN
10 seconds
b1, b2, ..., bk
(Written in
SASE+ language)
\multimap Esper - - FlinkCEP $_$- SASE \rightarrow OpenCEP

Overcoming the partial match problem

Overcoming the partial match problem

Main idea

"Separate the streaming evaluation of CEA \mathcal{A} into two processes"

Overcoming the partial match problem

Main idea

"Separate the streaming evaluation of CEA \mathcal{A} into two processes"

1. Update on each event

Overcoming the partial match problem

Main idea

"Separate the streaming evaluation of CEA \mathcal{A} into two processes"

1. Update on each event

- We keep a compact representation T of partial outputs (runs).

Overcoming the partial match problem

Main idea

"Separate the streaming evaluation of CEA \mathcal{A} into two processes"

1. Update on each event

- We keep a compact representation T of partial outputs (runs).
- For each new event e, we take linear time $|e|+|\mathcal{A}|$ to update T, independently of $|T|$.

Overcoming the partial match problem

Main idea

"Separate the streaming evaluation of CEA \mathcal{A} into two processes"

1. Update on each event

- We keep a compact representation T of partial outputs (runs).
- For each new event e, we take linear time $|e|+|\mathcal{A}|$ to update T, independently of $|T|$.

2. Enumeration of outputs (output-linear delay enumeration)

Overcoming the partial match problem

Main idea

"Separate the streaming evaluation of CEA \mathcal{A} into two processes"

1. Update on each event

- We keep a compact representation T of partial outputs (runs).
- For each new event e, we take linear time $|e|+|\mathcal{A}|$ to update T, independently of $|T|$.

2. Enumeration of outputs (output-linear delay enumeration)

- Whenever an event triggers new recognized complex events, the enumeration phase is called, independent of the update process.

Overcoming the partial match problem

Main idea

"Separate the streaming evaluation of CEA \mathcal{A} into two processes"

1. Update on each event

- We keep a compact representation T of partial outputs (runs).
- For each new event e, we take linear time $|e|+|\mathcal{A}|$ to update T, independently of $|T|$.

2. Enumeration of outputs (output-linear delay enumeration)

- Whenever an event triggers new recognized complex events, the enumeration phase is called, independent of the update process.
- All complex events C_{1}, C_{2}, \ldots for the current position are enumerated taking $\mathcal{O}\left(\left|C_{i}\right|\right)$ time to print C_{i}.

Overcoming the partial match problem

Main idea

"Separate the streaming evaluation of CEA \mathcal{A} into two processes"

1. Update on each event

"Same guarantee as a streaming algorithm."
2. Enumeration of outputs (output-linear delay enumeration)

- Whenever an event triggers new recognized complex events, the enumeration phase is called, independent of the update process.
- All complex events C_{1}, C_{2}, \ldots for the current position are enumerated taking $\mathcal{O}\left(\left|C_{i}\right|\right)$ time to print C_{i}.

Overcoming the partial match problem

Main idea

"Separate the streaming evaluation of CEA \mathcal{A} into two processes"

1. Update on each event
"Same guarantee as a streaming algorithm."
2. Enumeration of outputs (output-linear delay enumeration)
"Users do not see any difference compared to naively storing all outputs"

Overcoming the partial match problem

Main idea

"Separate the streaming evaluation of CEA \mathcal{A} into two processes"

1. Update on each event
"Same guarantee as a streaming algorithm."
2. Enumeration of outputs (output-linear delay enumeration)
"Users do not see any difference compared to naively storing all outputs"

> If an evaluation algorithm E satisfies 1 . and 2. , we say that E has output-linear delay evaluation.

CEA evaluation strategy

Definition

Let $\epsilon \in \mathbb{N} \cup\{\infty\}$, let \mathcal{A} be a CEA and \mathcal{S} a stream. We define

$$
\llbracket \mathcal{A} \text { WITHIN } \epsilon \rrbracket(\mathcal{S}):=\{C \in \llbracket \mathcal{A} \rrbracket(\mathcal{S}) \mid C(\text { end })-C(\text { start }) \leq \epsilon\} .
$$

CEA evaluation strategy

Theorem

[\mathcal{A} WITHIN ϵ] can be evaluated with output-linear delay, for every CEA \mathcal{A} and every ϵ.

CEA evaluation strategy

Theorem

$\llbracket \mathcal{A}$ WITHIN $\epsilon \rrbracket$ can be evaluated with output-linear delay, for every CEA \mathcal{A} and every ϵ.

Main ideas of the algorithm:

1. A notion of I/O deterministic CEA.

CEA evaluation strategy

Theorem

$\llbracket \mathcal{A}$ WITHIN $\epsilon \rrbracket$ can be evaluated with output-linear delay, for every CEA \mathcal{A} and every ϵ.

Main ideas of the algorithm:

1. A notion of I/O deterministic CEA.
2. A timed Enumerable Compact Set (tECS) for compactly representing complex events and enumerating all outputs with window-size ϵ.

CEA evaluation strategy

Theorem

$\llbracket \mathcal{A}$ WITHIN $\epsilon \rrbracket$ can be evaluated with output-linear delay, for every CEA \mathcal{A} and every ϵ.

Main ideas of the algorithm:

1. A notion of I/O deterministic CEA.
2. A timed Enumerable Compact Set (tECS) for compactly representing complex events and enumerating all outputs with window-size ϵ.
3. An evaluation algorithm for incrementally building tECS given active states of I / O deterministic CEA.

I/O determinism

Definition

A CEA is $1 / O$ deterministic if for every pair of transitions $q \xrightarrow{P_{1} / m_{1}} q_{1}$ and $q \xrightarrow{P_{2} / m_{2}} q_{2}$ from the same state q, if $P_{1} \cap P_{2} \neq \varnothing$ then $m_{1} \neq m_{2}$.

I/O determinism

Definition

A CEA is $1 / O$ deterministic if for every pair of transitions $q \xrightarrow{P_{1} / m_{1}} q_{1}$ and $q \xrightarrow{P_{2} / m_{2}} q_{2}$ from the same state q, if $P_{1} \cap P_{2} \neq \varnothing$ then $m_{1} \neq m_{2}$.

"Every recognized complex event has only one run that defines it."

I/O determinism

Definition

A CEA is $1 / O$ deterministic if for every pair of transitions $q \xrightarrow{P_{1} / m_{1}} q_{1}$ and $q \xrightarrow{P_{2} / m_{2}} q_{2}$ from the same state q, if $P_{1} \cap P_{2} \neq \varnothing$ then $m_{1} \neq m_{2}$.

Proposition

CEA can be I/O-determinized in exponential time.

Timed Enumerable Compact Sets

Definition

A timed Enumerable Compact Set (tECS) is a DAG with three kinds of nodes: bottom nodes, position nodes, and union nodes, with out-degree 0,1 , and 2 , respectively.

Timed Enumerable Compact Sets

Definition

A timed Enumerable Compact Set (tECS) is a DAG with three kinds of nodes: bottom nodes, position nodes, and union nodes, with out-degree 0,1 , and 2 , respectively.

Timed Enumerable Compact Sets

Definition

A timed Enumerable Compact Set (tECS) is a DAG with three kinds of nodes: bottom nodes, position nodes, and union nodes, with out-degree 0,1 , and 2 , respectively.

Timed Enumerable Compact Sets

Definition

A timed Enumerable Compact Set (tECS) is a DAG with three kinds of nodes: bottom nodes, position nodes, and union nodes, with out-degree 0,1 , and 2 , respectively.

Timed Enumerable Compact Sets

Definition

A timed Enumerable Compact Set (tECS) is a DAG with three kinds of nodes: bottom nodes, position nodes, and union nodes, with out-degree 0,1 , and 2 , respectively.

Timed Enumerable Compact Sets

Definition

A timed Enumerable Compact Set (tECS) is a DAG with three kinds of nodes: bottom nodes, position nodes, and union nodes, with out-degree 0,1 , and 2 , respectively.

Timed Enumerable Compact Sets: semantics

Definition
A open complex event is a pair (i, C) with $i \in \mathbb{N}$ and $C \subseteq \mathbb{N}$ finite.

Timed Enumerable Compact Sets: semantics

Definition

A open complex event is a pair (i, C) with $i \in \mathbb{N}$ and $C \subseteq \mathbb{N}$ finite.

Semantics:

- Every path from a node to a bottom node defines an open complex event.
- A node n hence encodes a set $\llbracket n \rrbracket$ of open complex events.

Timed Enumerable Compact Sets: semantics

Definition

A open complex event is a pair (i, C) with $i \in \mathbb{N}$ and $C \subseteq \mathbb{N}$ finite.

Semantics:

- Every path from a node to a bottom node defines an open complex event.
- A node n hence encodes a set $\llbracket n \rrbracket$ of open complex events.

Open complex event: $(0,\{0,5,6\})$

Timed Enumerable Compact Sets: semantics

Definition

A open complex event is a pair (i, C) with $i \in \mathbb{N}$ and $C \subseteq \mathbb{N}$ finite.

Semantics:

- Every path from a node to a bottom node defines an open complex event.
- A node n hence encodes a set $\llbracket n \rrbracket$ of open complex events.

Open complex event: $(0,\{0,2,6\})$

Timed Enumerable Compact Sets: semantics

Definition

A open complex event is a pair (i, C) with $i \in \mathbb{N}$ and $C \subseteq \mathbb{N}$ finite.

Semantics:

- Every path from a node to a bottom node defines an open complex event.
- A node n hence encodes a set $\llbracket n \rrbracket$ of open complex events.

Open complex event: $(1,\{1,2,6\})$

Timed Enumerable Compact Sets: semantics

Definition

A open complex event is a pair (i, C) with $i \in \mathbb{N}$ and $C \subseteq \mathbb{N}$ finite.

Semantics:

- Every path from a node to a bottom node defines an open complex event.
- A node n hence encodes a set $\llbracket n \rrbracket$ of open complex events.

Open complex event: $(1,\{1,2\})$

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ϵ and $j \in \mathbb{N}$ we want to be able to enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j):=\{\quad \mid(i, C) \in \llbracket n \rrbracket \quad\}
$$

with output-linear delay.

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ϵ and $j \in \mathbb{N}$ we want to be able to enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j):=\{\quad \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ϵ and $j \in \mathbb{N}$ we want to be able to enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j):=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ϵ and $j \in \mathbb{N}$ we want to be able to enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j):=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.
In order to allow this, we need the following structure on tECS:

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ϵ and $j \in \mathbb{N}$ we want to be able to enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j):=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.
In order to allow this, we need the following structure on tECS:

- For every node n, distinct paths starting at n encode distinct open complex events.

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ϵ and $j \in \mathbb{N}$ we want to be able to enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j):=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.
In order to allow this, we need the following structure on tECS:

- For every node n, distinct paths starting at n encode distinct open complex events.

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ϵ and $j \in \mathbb{N}$ we want to be able to enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j):=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.
In order to allow this, we need the following structure on tECS:

- For every node n, distinct paths starting at n encode distinct open complex events.

■ Nodes store their max-start time: the largest time value of any bottom node reachable from n.

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ϵ and $j \in \mathbb{N}$ we want to be able to enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j):=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.
In order to allow this, we need the following structure on tECS:

- For every node n, distinct paths starting at n encode distinct open complex events.

■ Nodes store their max-start time: the largest time value of any bottom node reachable from n.

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ϵ and $j \in \mathbb{N}$ we want to be able to enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j):=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.

In order to allow this, we need the following structure on tECS:

- For every node n, distinct paths starting at n encode distinct open complex events.

■ Nodes store their max-start time: the largest time value of any bottom node reachable from n.

- The children of union nodes u are max-start sorted: $\max (\operatorname{left}(u)) \geq \max (\operatorname{right}(u))$.

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ϵ and $j \in \mathbb{N}$ we want to be able to enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j):=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.

In order to allow this, we need the following structure on tECS:

- For every node n, distinct paths starting at n encode distinct open complex events.

■ Nodes store their max-start time: the largest time value of any bottom node reachable from n.

- The children of union nodes u are max-start sorted: $\max (\operatorname{left}(u)) \geq \max (\operatorname{right}(u))$.
- There is a constant bounding the length of chains of union left-child paths.

Timed Enumerable Compact Sets: enumeration

Theorem

Under the previous conditions, we may enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j)=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.

Timed Enumerable Compact Sets: enumeration

Theorem

Under the previous conditions, we may enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j)=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.
Example: $n=6, \epsilon=5, j=6$

Enumeration algorithm:

■ Do depth-first search, starting from n.

- Visit left-children of union nodes before right-children.
- Before moving to a child c, check that $j-\max (c) \leq \epsilon$.

Timed Enumerable Compact Sets: enumeration

Theorem

Under the previous conditions, we may enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j)=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.
Example: $n=6, \epsilon=5, j=6$

Enumeration algorithm:

■ Do depth-first search, starting from n.

- Visit left-children of union nodes before right-children.
- Before moving to a child c, check that $j-\max (c) \leq \epsilon$.

Timed Enumerable Compact Sets: enumeration

Theorem

Under the previous conditions, we may enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j)=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.
Example: $n=6, \epsilon=5, j=6$

Enumeration algorithm:

■ Do depth-first search, starting from n.

- Visit left-children of union nodes before right-children.
- Before moving to a child c, check that $j-\max (c) \leq \epsilon$.

Timed Enumerable Compact Sets: enumeration

Theorem

Under the previous conditions, we may enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j)=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.
Example: $n=6, \epsilon=5, j=6$

Enumeration algorithm:

■ Do depth-first search, starting from n.

- Visit left-children of union nodes before right-children.
- Before moving to a child c, check that $j-\max (c) \leq \epsilon$.

Timed Enumerable Compact Sets: enumeration

Theorem

Under the previous conditions, we may enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j)=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.
Example: $n=6, \epsilon=5, j=6$

Enumeration algorithm:

■ Do depth-first search, starting from n.

- Visit left-children of union nodes before right-children.
- Before moving to a child c, check that $j-\max (c) \leq \epsilon$.

Timed Enumerable Compact Sets: enumeration

Theorem

Under the previous conditions, we may enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j)=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.
Example: $n=6, \epsilon=5, j=6$

Enumeration algorithm:

■ Do depth-first search, starting from n.

- Visit left-children of union nodes before right-children.
- Before moving to a child c, check that $j-\max (c) \leq \epsilon$.

Timed Enumerable Compact Sets: enumeration

Theorem

Under the previous conditions, we may enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j)=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.

Example: $n=6, \epsilon=5, j=6$
output $([1,6],\{1,5,6\})$

Enumeration algorithm:

- Do depth-first search, starting from n.
- Visit left-children of union nodes before right-children.
- Before moving to a child c, check that $j-\max (c) \leq \epsilon$.

Timed Enumerable Compact Sets: enumeration

Theorem

Under the previous conditions, we may enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j)=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.
Example: $n=6, \epsilon=5, j=6$

Enumeration algorithm:

■ Do depth-first search, starting from n.

- Visit left-children of union nodes before right-children.
- Before moving to a child c, check that $j-\max (c) \leq \epsilon$.

Timed Enumerable Compact Sets: enumeration

Theorem

Under the previous conditions, we may enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j)=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.
Example: $n=6, \epsilon=5, j=6$

Enumeration algorithm:

■ Do depth-first search, starting from n.

- Visit left-children of union nodes before right-children.
- Before moving to a child c, check that $j-\max (c) \leq \epsilon$.

Timed Enumerable Compact Sets: enumeration

Theorem

Under the previous conditions, we may enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j)=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.
Example: $n=6, \epsilon=5, j=6$

Enumeration algorithm:

■ Do depth-first search, starting from n.

- Visit left-children of union nodes before right-children.
- Before moving to a child c, check that $j-\max (c) \leq \epsilon$.

Timed Enumerable Compact Sets: enumeration

Theorem

Under the previous conditions, we may enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j)=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.
Example: $n=6, \epsilon=5, j=6$

Enumeration algorithm:

■ Do depth-first search, starting from n.

- Visit left-children of union nodes before right-children.
- Before moving to a child c, check that $j-\max (c) \leq \epsilon$.

Timed Enumerable Compact Sets: enumeration

Theorem

Under the previous conditions, we may enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j)=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.
Example: $n=6, \epsilon=5, j=6$

Enumeration algorithm:

■ Do depth-first search, starting from n.

- Visit left-children of union nodes before right-children.
- Before moving to a child c, check that $j-\max (c) \leq \epsilon$.

Timed Enumerable Compact Sets: enumeration

Theorem

Under the previous conditions, we may enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j)=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.
Example: $n=6, \epsilon=5, j=6$

Enumeration algorithm:

■ Do depth-first search, starting from n.

- Visit left-children of union nodes before right-children.
- Before moving to a child c, check that $j-\max (c) \leq \epsilon$.

Timed Enumerable Compact Sets: enumeration

Theorem

Under the previous conditions, we may enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j)=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.

Example: $n=6, \epsilon=5, j=6$

Enumeration algorithm:

■ Do depth-first search, starting from n.

- Visit left-children of union nodes before right-children.
- Before moving to a child c, check that $j-\max (c) \leq \epsilon$.

Timed Enumerable Compact Sets: enumeration

Theorem

Under the previous conditions, we may enumerate

$$
\llbracket n \rrbracket^{\epsilon}(j)=\{([i, j], C) \mid(i, C) \in \llbracket n \rrbracket, j-i \leq \epsilon\}
$$

with output-linear delay.

Example: $n=6, \epsilon=5, j=6$
output ([1,6], $\{1,2,6\}$)

Enumeration algorithm:

- Do depth-first search, starting from n.
- Visit left-children of union nodes before right-children.
- Before moving to a child c, check that $j-\max (c) \leq \epsilon$.

Evaluation Algorithm by Example

Evaluation Algorithm by Example

Stream:	$\left[\begin{array}{c}\text { SELL } \\ \text { MSFT } \\ 101\end{array}\right]$	$\left[\begin{array}{c}\text { SELL } \\ \text { MSFT } \\ 102\end{array}\right]$	$\left[\begin{array}{c}\text { SELL } \\ \text { INTL } \\ 80\end{array}\right]$	$\left[\begin{array}{c}\text { BUY } \\ \text { INTL } \\ 80\end{array}\right]$	$\left[\begin{array}{c}\text { SELL } \\ \text { AMZN } \\ 1900\end{array}\right]$	$\left[\begin{array}{c}\text { SELL } \\ \text { INTL } \\ 81\end{array}\right]$	$\left[\begin{array}{c}\text { SELL } \\ \text { AMZN } \\ 1920\end{array}\right]$	
	0	1	2	3	4	5	6	

Evaluation Algorithm by Example

tECS:

Algorithm crux:

■ Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

Evaluation Algorithm by Example

tECS:

Algorithm crux:

■ Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

Evaluation Algorithm by Example

tECS:

CEA:

Algorithm crux:

■ Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

Evaluation Algorithm by Example

tECS:

CEA:

Algorithm crux:

- Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.

Evaluation Algorithm by Example

tECS:

CEA:

Algorithm crux:

- Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.

Evaluation Algorithm by Example

tECS:

CEA:

Algorithm crux:

- Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.

Evaluation Algorithm by Example

tECS:

CEA:

Stream:	$\left[\begin{array}{c} \mathrm{SELL} \\ \text { SSFT } \\ 101 \end{array}\right]$	[$\left.\begin{array}{c}\text { SEL } \\ \text { SELT } \\ 102\end{array}\right]$	[$\begin{gathered}\text { SEL } \\ \text { ctu } \\ \text { cou }\end{gathered}$	$\left[\begin{array}{c}\text { BUY } \\ \text { NTL } \\ 80\end{array}\right]$	$\left[\begin{array}{c}\text { SELL } \\ \text { AlzN } \\ 1900\end{array}\right]$	[$\begin{gathered}\text { SELL } \\ \text { NTL } \\ 81\end{gathered}$	$\left[\begin{array}{c}\text { SEL } \\ \text { AMKN } \\ \text { A220 }\end{array}\right.$
	0	1	2	3	4	5	6

Algorithm crux:

- Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.

Evaluation Algorithm by Example

tECS:

CEA:

Algorithm crux:

- Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.

Evaluation Algorithm by Example

tECS:

CEA:

Algorithm crux:

- Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.

Evaluation Algorithm by Example

tECS:

CEA:

Algorithm crux:

- Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.

Evaluation Algorithm by Example

tECS:

Algorithm crux:

- Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.
■ Crucially, all bookkeeping is $\mathcal{O}(|C E A|)$, implying that we only take time $\mathcal{O}(|C E A|)$ per event. This is constant in data complexity.

Evaluation Algorithm by Example

tECS:

Algorithm crux:

- Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.
■ Crucially, all bookkeeping is $\mathcal{O}(|C E A|)$, implying that we only take time $\mathcal{O}(|C E A|)$ per event. This is constant in data complexity.

Evaluation Algorithm by Example

tECS:

Algorithm crux:

- Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.
■ Crucially, all bookkeeping is $\mathcal{O}(|C E A|)$, implying that we only take time $\mathcal{O}(|C E A|)$ per event. This is constant in data complexity.

Evaluation Algorithm by Example

tECS:

Algorithm crux:

- Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.
■ Crucially, all bookkeeping is $\mathcal{O}(|C E A|)$, implying that we only take time $\mathcal{O}(|C E A|)$ per event. This is constant in data complexity.

Evaluation Algorithm by Example

tECS:

Algorithm crux:

- Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.
■ Crucially, all bookkeeping is $\mathcal{O}(|C E A|)$, implying that we only take time $\mathcal{O}(|C E A|)$ per event. This is constant in data complexity.

Evaluation Algorithm by Example

tECS:

Algorithm crux:

- Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.
■ Crucially, all bookkeeping is $\mathcal{O}(|C E A|)$, implying that we only take time $\mathcal{O}(|C E A|)$ per event. This is constant in data complexity.

Evaluation Algorithm by Example

tECS:

Algorithm crux:

- Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.
■ Crucially, all bookkeeping is $\mathcal{O}(|C E A|)$, implying that we only take time $\mathcal{O}(|C E A|)$ per event. This is constant in data complexity.

Evaluation Algorithm by Example

tECS:

Algorithm crux:

- Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.
■ Crucially, all bookkeeping is $\mathcal{O}(|C E A|)$, implying that we only take time $\mathcal{O}(|C E A|)$ per event. This is constant in data complexity.

Evaluation Algorithm by Example

tECS:

Algorithm crux:

■ Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

- Maintain the set of active CEA states, and the open complex events they correspond to.

■ Crucially, all bookkeeping is $\mathcal{O}(|C E A|)$, implying that we only take time $\mathcal{O}(|C E A|)$ per event. This is constant in data complexity.

Evaluation Algorithm by Example

tECS:

Algorithm crux:

■ Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

- Maintain the set of active CEA states, and the open complex events they correspond to.
- Crucially, all bookkeeping is $\mathcal{O}(|C E A|)$, implying that we only take time $\mathcal{O}(|C E A|)$ per event. This is constant in data complexity.

Evaluation Algorithm by Example

tECS:

Algorithm crux:

■ Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

- Maintain the set of active CEA states, and the open complex events they correspond to.

■ Crucially, all bookkeeping is $\mathcal{O}(|C E A|)$, implying that we only take time $\mathcal{O}(|C E A|)$ per event. This is constant in data complexity.

Evaluation Algorithm by Example

tECS:

Algorithm crux:

■ Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

- Maintain the set of active CEA states, and the open complex events they correspond to.

■ Crucially, all bookkeeping is $\mathcal{O}(|C E A|)$, implying that we only take time $\mathcal{O}(|C E A|)$ per event. This is constant in data complexity.

Evaluation Algorithm by Example

tECS:

Algorithm crux:

■ Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.
■ Crucially, all bookkeeping is $\mathcal{O}(|C E A|)$, implying that we only take time $\mathcal{O}(|C E A|)$ per event. This is constant in data complexity.

Evaluation Algorithm by Example

tECS:

Algorithm crux:

■ Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.
■ Crucially, all bookkeeping is $\mathcal{O}(|C E A|)$, implying that we only take time $\mathcal{O}(|C E A|)$ per event. This is constant in data complexity.

Evaluation Algorithm by Example

tECS:

Algorithm crux:

■ Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.
■ Crucially, all bookkeeping is $\mathcal{O}(|C E A|)$, implying that we only take time $\mathcal{O}(|C E A|)$ per event. This is constant in data complexity.

Evaluation Algorithm by Example

tECS:

Algorithm crux:

■ Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.
■ Crucially, all bookkeeping is $\mathcal{O}(|C E A|)$, implying that we only take time $\mathcal{O}(|C E A|)$ per event. This is constant in data complexity.

Evaluation Algorithm by Example

tECS:

CEA:

Algorithm crux:

■ Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.
■ Crucially, all bookkeeping is $\mathcal{O}(|C E A|)$, implying that we only take time $\mathcal{O}(|C E A|)$ per event. This is constant in data complexity.

Evaluation Algorithm by Example

tECS:

CEA:

Algorithm crux:

■ Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.
■ Crucially, all bookkeeping is $\mathcal{O}(|C E A|)$, implying that we only take time $\mathcal{O}(|C E A|)$ per event. This is constant in data complexity.

Evaluation Algorithm by Example

tECS:

CEA:

Algorithm crux:

■ Incrementally build the (well-structured) tECS to represents all open complex events up to the current event.

■ Maintain the set of active CEA states, and the open complex events they correspond to.
■ Crucially, all bookkeeping is $\mathcal{O}(|C E A|)$, implying that we only take time $\mathcal{O}(|C E A|)$ per event. This is constant in data complexity.

Outline

A logic for CER
 An automaton model for CER

Evaluation algorithm

The CORE complex event recognition engine

CORE: COmplex event Recognition Engine

An open-source implementation [1] of our approach.

CORE: COmplex event Recognition Engine

An open-source implementation [1] of our approach.

1. Practical query language (CEQL) based on unary CEL.
2. Evaluation in constant update-time and output-linear delay, based on CEA.
3. CORE's performance is stable w.r.t query and time-window size.
4. CORE outperforms existing systems by up to 5 orders of magnitude.

CEQL: Complex Event Query language

CEQL: Complex Event Query language

```
SELECT < list-of-variables >
FROM
WHERE
FILTER
[PARTITION BY
[WITHIN
< list-of-streams >
< CEL-formula >
< list-of-filters >
< list-of-attributes >]
    < time-value >]
```


CEQL: Complex Event Query language

```
SELECT < list-of-variables >
FROM < list-of-streams >
WHERE < CEL-formula >
FILTER < list-of-filters >
[PARTITION BY < list-of-attributes >]
[WITHIN < time-value >]
```


Examples (Stock Market)

```
1. SELECT * FROM Stocks
```

WHERE SELL as msft; SELL as intel; SELL as amzn
FILTER msft[name="MSFT"] AND msft[price > 100]
AND intel[name="INTL"]
AND amzn[name="AMZN"] AND amzn[price < 2000]

CEQL: Complex Event Query language

```
SELECT < list-of-variables >
FROM < list-of-streams >
WHERE < CEL-formula >
FILTER < list-of-filters >
[PARTITION BY < list-of-attributes >]
[WITHIN < time-value >]
```

Examples (Stock Market)

1. SELECT * FROM Stocks
WHERE SELL as msft; SELL as intel; SELL as amzn
FILTER msft[name="MSFT"] AND msft[price > 100]
AND intel[name="INTL"]
AND amzn[name="AMZN"] AND amzn[price < 2000]
Stream: \(\left[$$
\begin{array}{c}\text { SELL } \\
\text { MSFT } \\
101\end{array}
$$\right]\left[$$
\begin{array}{c}\text { SELL } \\
\text { MSFT } \\
102\end{array}
$$\right]\left[$$
\begin{array}{c}\text { SELL } \\
\text { INTL } \\
80\end{array}
$$\right]\left[$$
\begin{array}{c}\text { BUY } \\
\text { INTL } \\
80\end{array}
$$\right]\left[$$
\begin{array}{c}\text { SELL } \\
\text { AMZN } \\
1900\end{array}
$$\right]\left[$$
\begin{array}{c}\text { BUY } \\
\text { INTL } \\
81\end{array}
$$\right]\left[\begin{array}{c}BUY

AMZN

1920\end{array}\right] ··· . \quad\)| (type) |
| :---: |
| (name) |

CEQL: Complex Event Query language

```
SELECT < list-of-variables >
FROM < list-of-streams >
WHERE < CEL-formula >
FILTER < list-of-filters >
[PARTITION BY < list-of-attributes >]
[WITHIN < time-value >]
```


Examples (Stock Market)

1. SELECT * FROM Stocks

WHERE SELL as msft; SELL as intel; SELL as amzn
FILTER msft[name="MSFT"] AND msft[price > 100]
AND intel[name="INTL"]
AND amzn[name="AMZN"] AND amzn[price < 2000]

Stream:
\(\left[$$
\begin{array}{c}\text { SELL } \\
\text { MSFT } \\
101\end{array}
$$\right]\left[$$
\begin{array}{c}\text { SELL } \\
\text { MSFT } \\
102\end{array}
$$\right]\left[$$
\begin{array}{c}\text { SELL } \\
\text { INTL } \\
80\end{array}
$$\right]\left[$$
\begin{array}{c}\text { BUY } \\
\text { INTL } \\
80\end{array}
$$\right]\left[$$
\begin{array}{c}\text { SELL } \\
\text { AMZN } \\
1900\end{array}
$$\right]\left[$$
\begin{array}{c}\text { BUY } \\
\text { INTL } \\
81\end{array}
$$\right]\left[\begin{array}{c}BUY

AMZN

1920\end{array}\right] \cdots \quad\)| (type) |
| :---: |
| (name) |
| (price) |

CEQL: Complex Event Query language

```
SELECT < list-of-variables >
FROM < list-of-streams >
WHERE < CEL-formula >
FILTER < list-of-filters >
[PARTITION BY < list-of-attributes >]
[WITHIN < time-value >]
```


Examples (Stock Market)

1. SELECT * FROM Stocks

WHERE SELL as msft; SELL as intel; SELL as amzn
FILTER msft[name="MSFT"] AND msft[price > 100]
AND intel[name="INTL"]
AND amzn[name="AMZN"] AND amzn[price < 2000]

Stream: $\left[\begin{array}{c}\text { SELL } \\ \text { MSFT } \\ 101\end{array}\right]\left[\begin{array}{c}\text { SELL } \\ \text { MSFT } \\ 102\end{array}\right]\left[\begin{array}{c}\text { SELL } \\ \text { INTL } \\ 80\end{array}\right]\left[\begin{array}{c}\text { BUY } \\ \text { INTL } \\ 80\end{array}\right]\left[\begin{array}{c}\text { SELL } \\ \text { AMZN } \\ 1900\end{array}\right]\left[\begin{array}{c}\text { BUY } \\ \text { INTL } \\ 81\end{array}\right]\left[\begin{array}{c}\text { BUY } \\ \text { AMZN } \\ 1920\end{array}\right] \ldots . \begin{gathered}\text { (type) } \\ \text { (name) }\end{gathered}$

CEQL: Complex Event Query language

```
SELECT < list-of-variables >
FROM
WHERE
FILTER
[PARTITION BY
[WITHIN
< list-of-streams >
    < CEL-formula >
    < list-of-filters >
    < list-of-attributes >]
    < time-value >]
```


CEQL: Complex Event Query language

```
SELECT < list-of-variables >
FROM
WHERE
FILTER < list-of-filters >
[PARTITION BY < list-of-attributes >]
[WITHIN < time-value >]
```

Examples (Stock Market)
2. SELECT

WHERE
PARTITION BY WITHIN
s, b FROM Stocks
(BUY or SELL) as s ; (BUY or SELL) as b [name]
5 minute

CEQL: Complex Event Query language

```
SELECT < list-of-variables >
FROM
WHERE
FILTER
[PARTITION BY < list-of-attributes >]
[WITHIN < time-value >]
```


Examples (Stock Market)

2. SELECT
s, b FROM Stocks
WHERE
PARTITION BY
WITHIN
[name]
5 minute
(BUY or SELL) as s; (BUY or SELL) as b
Stream: \(\quad\left[$$
\begin{array}{c}\text { SELL } \\
\text { MSFT } \\
101 \\
10: 00\end{array}
$$\right]\left[$$
\begin{array}{c}\text { SELL } \\
\text { MSFT } \\
102 \\
10: 02\end{array}
$$\right]\left[$$
\begin{array}{c}\text { SELL } \\
\text { INTL } \\
80 \\
10: 10\end{array}
$$\right]\left[$$
\begin{array}{c}\text { BUY } \\
\text { INTL } \\
80 \\
10: 14\end{array}
$$\right]\left[$$
\begin{array}{c}\text { SELL } \\
\text { AMZN } \\
1900 \\
10: 25\end{array}
$$\right]\left[$$
\begin{array}{c}\text { BUY } \\
\text { INTL } \\
81 \\
10: 30\end{array}
$$\right]\left[\begin{array}{c}BUY

AMZN

1920

10: 33\end{array}\right] ···\)| (type) |
| :--- |
| (name) |

CEQL: Complex Event Query language

```
SELECT < list-of-variables >
FROM
WHERE
FILTER
[PARTITION BY < list-of-attributes >]
[WITHIN < time-value >]
```


Examples (Stock Market)

2. SELECT
s, b FROM Stocks
WHERE
PARTITION BY
WITHIN
[name]
5 minute
(BUY or SELL) as s; (BUY or SELL) as b
Stream: \(\quad\left[$$
\begin{array}{c}\text { SELL } \\
\text { MSFT } \\
101 \\
10: 00\end{array}
$$\right]\left[$$
\begin{array}{c}\text { SELL } \\
\text { MSFT } \\
102 \\
10: 02\end{array}
$$\right]\left[$$
\begin{array}{c}\text { SELL } \\
\text { INTL } \\
80 \\
10: 10\end{array}
$$\right]\left[$$
\begin{array}{c}\text { BUY } \\
\text { INTL } \\
80 \\
10: 14\end{array}
$$\right]\left[$$
\begin{array}{c}\text { SELL } \\
\text { AMZN } \\
1900 \\
10: 25\end{array}
$$\right]\left[$$
\begin{array}{c}\text { BUY } \\
\text { INTL } \\
81 \\
10: 30\end{array}
$$\right]\left[\begin{array}{c}BUY

AMZN

1920

10: 33\end{array}\right] ··· .\)| (type) |
| :---: |
| (name) |

Experiments: Sequence queries

Experiments: Sequence queries

Experiments: Sequence queries

Experiments: Sequence queries


```
SELECT * FROM Dataset
WHERE A1 ; A2 ; ... ; An
FILTER A1[filter \({ }_{1}\) ] AND ... AND An[filter \({ }_{n}\) ]
WITHIN T
```

We use sequences of length $n=3,6,9,12,24$.

Experiments: Sequence queries

\bullet Esper - FlinkCEP - SASE \rightarrow OpenCEP \rightarrow CORE

1. Esper (industry)
2. FlinkCEP (industry)
3. SASE (academy)
4. OpenCEP (academy)
5. CORE

Experiments: Sequence queries
\rightarrow Esper - FlinkCEP - - SASE * OpenCEP \rightarrow CORE

Experiments: Sequence queries

- Esper - FlinkCEP - - SASE * OpenCEP - CORE

Experiments: Sequence queries

- Esper - FlinkCEP - - SASE * OpenCEP - CORE

CORE is up to 4 orders of magnitude faster than other systems

Experiments: Sequence queries (memory)
\bullet Esper - FlinkCEP - SASE $*$ OpenCEP \rightarrow CORE

Experiments: Sequence queries (memory)
\bullet Esper - FlinkCEP - SASE * OpenCEP \rightarrow CORE

Experiments: Sequence queries (memory)

- Esper - FlinkCEP - SASE * OpenCEP \rightarrow CORE

CORE is stable in the memory usage

Experiments: Window queries

\rightarrow Esper - FlinkCEP \rightarrow SASE \rightarrow OpenCEP \rightarrow CORE

Stock Market

Smart Homes
Taxi Trips

Experiments: Window queries

\longrightarrow Esper - FlinkCEP - SASE - - OpenCEP \leadsto CORE


```
SELECT * FROM Dataset
WHERE A1 ; A2 ; A3
FILTER A1[filter 1] AND A2[filter 2] AND A3[filter3]
WITHIN X
```


Experiments: Window queries

\longrightarrow Esper - FlinkCEP - SASE - - OpenCEP \leadsto CORE

SELECT * FROM Dataset
WHERE A1 ; A2 ; A3
FILTER A1[filter ${ }_{1}$] AND A2[filter ${ }_{2}$] AND A3[filter ${ }_{3}$]
WITHIN X

We use time-windows size $\mathrm{X}=\mathrm{T}, 2 \mathrm{~T}, 3 \mathrm{~T}, 4 \mathrm{~T}$.

Experiments: Window queries

\rightarrow Esper - - FlinkCEP \rightarrow - SASE \rightarrow OpenCEP \leadsto CORE

Experiments: Window queries

\rightarrow Esper - FlinkCEP \rightarrow SASE \rightarrow OpenCEP \rightarrow CORE

Conclusions

1. CORE is orders of magnitude faster than other systems.

Experiments: Window queries

\rightarrow Esper - - FlinkCEP \rightarrow - SASE \rightarrow OpenCEP \rightarrow CORE

Conclusions

1. CORE is orders of magnitude faster than other systems.
2. CORE is not affected by the query or time-windows size.

Experiments: Window queries

\rightarrow Esper - FlinkCEP \rightarrow SASE \rightarrow OpenCEP \rightarrow CORE

Smart Homes

Taxi Trips

In the paper [1], we show similar results with other query workloads

Outline

A logic for CERAn automaton model for CER
Evaluation algorithm
The CORE complex event recognition engine
Open questions

Time Model

Time Model

Limitation: No out-of-order events

- Time is implicit, given by arrival order
- Crucial property for CEA evaluation:

Events arrive in timestamp order

Time Model

Limitation: No out-of-order events

- Time is implicit, given by arrival order
- Crucial property for CEA evaluation:

Events arrive in timestamp order

Open question: What is the impact of out-of-order events on

- Language design and expressiveness ?

■ Evaluation model (CEA) and complexity ?

Event correlation

Limitation: CORE and CEQL are based on unary CEL

Event correlation

Limitation: CORE and CEQL are based on unary CEL
■ Unary CEL does not allow event correlation.

Example: unsupported

$$
\varphi=(B ; S) \text { FILTER } B[\mathrm{id}]=S[\mathrm{id}] \wedge B[\text { volume }]>S[\text { volume }]
$$

Event correlation

Limitation: CORE and CEQL are based on unary CEL
■ Unary CEL does not allow event correlation.
■ ... partially solved by PARTITION BY in CEQL for equality in limited cases.
Example: unsupported

$$
\varphi=(B ; S) \text { FILTER } B[\mathrm{id}]=S[\mathrm{id}] \wedge B[\text { volume }]>S[\text { volume }]
$$

Event correlation

Limitation: CORE and CEQL are based on unary CEL

- Unary CEL does not allow event correlation.

■ ... partially solved by PARTITION BY in CEQL for equality in limited cases.

Example: unsupported

$$
\varphi=(B ; S) \text { FILTER } B[\mathrm{id}]=S[\mathrm{id}] \wedge B[\text { volume }]>S[\text { volume }]
$$

Open questions:

■ What is the impact of moving to k-ary predicates, $k>1$ on Language expressiveness ?

- What is the right computational model (à la CEA) with binary predicates ?
- How does this affect complexity?

Processing versus recognition

Limitation: CORE, CEQL, and CEL focus on complex event recognition

Processing versus recognition

Limitation: CORE, CEQL, and CEL focus on complex event recognition
Other features in the literature that focus on processing of complex events are not supported:

- aggregation
- integration of non-event data sources
- parallel or distributed execution

Processing versus recognition

Limitation: CORE, CEQL, and CEL focus on complex event recognition
Other features in the literature that focus on processing of complex events are not supported:

- aggregation
- integration of non-event data sources
- parallel or distributed execution

Open questions:

■ What is the right language for CER + aggregation?

- What is the right computational model (à la CEA) in the presence of aggregation?
- How does aggregation affect evaluation complexity?

Getting to the CORE of Complex Event Recognition

Stijn Vansummeren

UHasselt, Data Science Institute

[^0]: [1] D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman
 "On supporting Kleene closure over event streams", ICDE 2008.
 [2] A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren
 "A Formal Framework for Complex Event Recognition", ACM TODS 46(4), 2021.

