
Getting to the CORE
of Complex Event Recognition

Stijn Vansummeren

UHasselt, Data Science Institute

My goal for this talk

1. Present a logic for CER.

2. Introduce CEA, an automaton model for CER.

3. Explain our algorithm for processing CEA in constant-time per event.

4. Discuss limitations and open questions.

My goal for this talk

1. Present a logic for CER.

2. Introduce CEA, an automaton model for CER.

3. Explain our algorithm for processing CEA in constant-time per event.

4. Discuss limitations and open questions.

My goal for this talk

1. Present a logic for CER.

2. Introduce CEA, an automaton model for CER.

3. Explain our algorithm for processing CEA in constant-time per event.

4. Discuss limitations and open questions.

A Formal Framework for

Complex Event Recognition

ACM TODS 46(4), 2021

CORE: a Complex Event

Recognition Engine

VLDB 2022

My goal for this talk

1. Present a logic for CER.

2. Introduce CEA, an automaton model for CER.

3. Explain our algorithm for processing CEA in constant-time per event.

4. Discuss limitations and open questions.

Marco Bucchi Alejandro Grez Andrés Quintana Cristian Riveros Martin Ugarte

PUC Chile, IMFD

A logic for CER

An automaton model for CER

Evaluation algorithm

The CORE complex event recognition engine

Open questions

Outline

”[...] CEP languages are often oversimplified, providing only a small set of operators,

insufficient to express a number of desirable patterns and the rules to combine incoming

information to produce new knowledge. Even worse, the semantics of such languages is

usually given only informally, which leads to ambiguities and makes it difficult compare the

different proposals.“

G. Cugola and A. Margara

“TESLA: A formally defined event specification language”, DEBS 2010.

See also [1] and [2].

[1] D. Zimmer and R. Unland

“On the semantics of complex events in active database management systems.” ICDE 1999.

[2] N. Giatrakos, E. Alevizos, A. Artikis, A. Deligiannakis, M. N. Garofalakis

“Complex event recognition in the Big Data era: a survey.” VLDB J. 29(1), 2020.

”[...] CEP languages are often oversimplified, providing only a small set of operators,

insufficient to express a number of desirable patterns and the rules to combine incoming

information to produce new knowledge. Even worse, the semantics of such languages is

usually given only informally, which leads to ambiguities and makes it difficult compare the

different proposals.“

G. Cugola and A. Margara

“TESLA: A formally defined event specification language”, DEBS 2010.

See also [1] and [2].

[1] D. Zimmer and R. Unland

“On the semantics of complex events in active database management systems.” ICDE 1999.

[2] N. Giatrakos, E. Alevizos, A. Artikis, A. Deligiannakis, M. N. Garofalakis

“Complex event recognition in the Big Data era: a survey.” VLDB J. 29(1), 2020.

What do we expect for a query language for CER?

1. Formal syntax and semantics.

“For every query and stream, the output will be defined precisely.”

2. Declarative, denotational semantics.

“The semantics will specify what the output is, but not how to compute it.”

3. Composable language.

“The language operators can be combined as free as possible.”

Complex Event Logic (CEL) is our proposal for a CER query language with these properties.

What do we expect for a query language for CER?

1. Formal syntax and semantics.

“For every query and stream, the output will be defined precisely.”

2. Declarative, denotational semantics.

“The semantics will specify what the output is, but not how to compute it.”

3. Composable language.

“The language operators can be combined as free as possible.”

Complex Event Logic (CEL) is our proposal for a CER query language with these properties.

What do we expect for a query language for CER?

1. Formal syntax and semantics.

“For every query and stream, the output will be defined precisely.”

2. Declarative, denotational semantics.

“The semantics will specify what the output is, but not how to compute it.”

3. Composable language.

“The language operators can be combined as free as possible.”

Complex Event Logic (CEL) is our proposal for a CER query language with these properties.

Data model for complex event recognition

“A stream is a sequence of events where each event is represented as a tuple.”

Event:

Buy (vol ∶ 25, stock ∶ ’amz’)

Event type Attribute name Attribute value

Data model for complex event recognition

“A stream is a sequence of events where each event is represented as a tuple.”

Event:

Buy (vol ∶ 25, stock ∶ ’amz’)

Event type Attribute name Attribute value

Data model for complex event recognition

“A stream is a sequence of events where each event is represented as a tuple.”

Event:

B (25, amz)

Event type Attribute value

Data model for complex event recognition

“A stream is a sequence of events where each event is represented as a tuple.”

Stream:

B(16, a) B(23, c) S(16,b) B(25, a) S(11, c) S(12,d) ⋯

0 1 2 3 4 5

Data model for complex event recognition

“A stream is a sequence of events where each event is represented as a tuple.”

Stream:

B(16, a) B(23, c) S(16,b) B(25, a) S(11, c) S(12,d) ⋯

0

1 2 3 4 5

Data model for complex event recognition

“A stream is a sequence of events where each event is represented as a tuple.”

Stream:

B(16, a) B(23, c) S(16,b) B(25, a) S(11, c) S(12,d) ⋯

0

1

2 3 4 5

Data model for complex event recognition

“A stream is a sequence of events where each event is represented as a tuple.”

Stream:

B(16, a) B(23, c) S(16,b) B(25, a) S(11, c) S(12,d) ⋯

0 1

2

3 4 5

Data model for complex event recognition

“A stream is a sequence of events where each event is represented as a tuple.”

Stream:

B(16, a) B(23, c) S(16,b) B(25, a) S(11, c) S(12,d) ⋯

0 1 2

3

4 5

Data model for complex event recognition

“A stream is a sequence of events where each event is represented as a tuple.”

Stream:

B(16, a) B(23, c) S(16,b) B(25, a) S(11, c) S(12,d) ⋯

0 1 2 3

4

5

Data model for complex event recognition

“A stream is a sequence of events where each event is represented as a tuple.”

Stream:

B(16, a) B(23, c) S(16,b) B(25, a) S(11, c) S(12,d) ⋯

0 1 2 3 4

5

Data model for complex event recognition

“A stream is a sequence of events where each event is represented as a tuple.”

Stream:

B(16, a) B(23, c) S(16,b) B(25, a) S(11, c) S(12,d) ⋯

0 1 2 3 4 5

Data model for complex event recognition

“A stream is a sequence of events where each event is represented as a tuple.”

Stream:

B0(16, a) B1(23, c) S2(16,b) B3(25, a) S4(11, c) S5(12,d) ⋯

Data model for complex event recognition

“A stream is a sequence of events where each event is represented as a tuple.”

Stream:

B0 B1 S2 B3 S4 S5 ⋯

Data model for complex event recognition

Definition
A complex event is a pair ([i , j],C) where

[i , j] is an interval that denotes the start and end of the complex event;

C ⊆ {i , i + 1, . . . , j} is a finite set of selected events.

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯Stream:

Complex event: []B0 S2 S4 S5

i jC

[]B3 S4 S6

Data model for complex event recognition

Definition
A complex event is a pair ([i , j],C) where

[i , j] is an interval that denotes the start and end of the complex event;

C ⊆ {i , i + 1, . . . , j} is a finite set of selected events.

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯Stream:

Complex event: []B0 S2 S4 S5

i jC

[]B3 S4 S6

Data model for complex event recognition

Definition
A complex event is a pair ([i , j],C) where

[i , j] is an interval that denotes the start and end of the complex event;

C ⊆ {i , i + 1, . . . , j} is a finite set of selected events.

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯Stream:

Complex event: []B0 S2 S4 S5

i jC

[]B3 S4 S6

Data model for complex event recognition

Definition
A complex event is a pair ([i , j],C) where

[i , j] is an interval that denotes the start and end of the complex event;

C ⊆ {i , i + 1, . . . , j} is a finite set of selected events.

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯Stream:

Complex event:

[]B0 S2 S4 S5

i jC

[]B3 S4 S6

Data model for complex event recognition

“ Complex Event Recognition (CER) is the act of recognizing complex events in a stream

of primitive events.”

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯Input:

Output: []B0 S2 S4

[]B3 S4

[]B1 S2 S5 S6

. . .

CER queries recognize complex events and extract them

Data model for complex event recognition

“ Complex Event Recognition (CER) is the act of recognizing complex events in a stream

of primitive events.”

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯Input:

Output: []B0 S2 S4

[]B3 S4

[]B1 S2 S5 S6

. . .

CER queries recognize complex events and extract them

Data model for complex event recognition

“ Complex Event Recognition (CER) is the act of recognizing complex events in a stream

of primitive events.”

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯Input:

Output:

[]B0 S2 S4

[]B3 S4

[]B1 S2 S5 S6

. . .

CER queries recognize complex events and extract them

Data model for complex event recognition

“ Complex Event Recognition (CER) is the act of recognizing complex events in a stream

of primitive events.”

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯Input:

Output: []B0 S2 S4

[]B3 S4

[]B1 S2 S5 S6

. . .

CER queries recognize complex events and extract them

Data model for complex event recognition

“ Complex Event Recognition (CER) is the act of recognizing complex events in a stream

of primitive events.”

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯Input:

Output: []B0 S2 S4

[]B3 S4

[]B1 S2 S5 S6

. . .

CER queries recognize complex events and extract them

Data model for complex event recognition

“ Complex Event Recognition (CER) is the act of recognizing complex events in a stream

of primitive events.”

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯Input:

Output: []B0 S2 S4

[]B3 S4

[]B1 S2 S5 S6

. . .

CER queries recognize complex events and extract them

Data model for complex event recognition

“ Complex Event Recognition (CER) is the act of recognizing complex events in a stream

of primitive events.”

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯Input:

Output: []B0 S2 S4

[]B3 S4

[]B1 S2 S5 S6

. . .

CER queries recognize complex events and extract them

Complex event logic (CEL)

CEL syntax
ϕ ∶= R

∣ ϕ ; ϕ ∣ ϕ OR ϕ ∣ ϕ + ∣ ϕ AS X ∣ ϕ FILTER P(X) ∣ πX (ϕ)

R is an event type.

X is a variable.

P(X) is a predicate over variables X = X1, . . . ,Xk .

Example of a CEL formula

ϕ = (B ; (S+ AS X) ; B) FILTER SameStock(X)

Variables in CEL represent sets of events (i.e. complex events)

Complex event logic (CEL)

CEL syntax
ϕ ∶= R

∣ ϕ ; ϕ ∣ ϕ OR ϕ ∣ ϕ + ∣ ϕ AS X ∣ ϕ FILTER P(X) ∣ πX (ϕ)

R is an event type.

X is a variable.

P(X) is a predicate over variables X = X1, . . . ,Xk .

Example of a CEL formula

ϕ = (B ; (S+ AS X) ; B) FILTER SameStock(X)

Variables in CEL represent sets of events (i.e. complex events)

Complex event logic (CEL)

CEL syntax
ϕ ∶= R ∣ ϕ ; ϕ ∣ ϕ OR ϕ ∣ ϕ +

∣ ϕ AS X ∣ ϕ FILTER P(X) ∣ πX (ϕ)

R is an event type.

X is a variable.

P(X) is a predicate over variables X = X1, . . . ,Xk .

Example of a CEL formula

ϕ = (B ; (S+ AS X) ; B) FILTER SameStock(X)

Variables in CEL represent sets of events (i.e. complex events)

Complex event logic (CEL)

CEL syntax
ϕ ∶= R ∣ ϕ ; ϕ ∣ ϕ OR ϕ ∣ ϕ + ∣ ϕ AS X

∣ ϕ FILTER P(X) ∣ πX (ϕ)

R is an event type.

X is a variable.

P(X) is a predicate over variables X = X1, . . . ,Xk .

Example of a CEL formula

ϕ = (B ; (S+ AS X) ; B) FILTER SameStock(X)

Variables in CEL represent sets of events (i.e. complex events)

Complex event logic (CEL)

CEL syntax
ϕ ∶= R ∣ ϕ ; ϕ ∣ ϕ OR ϕ ∣ ϕ + ∣ ϕ AS X ∣ ϕ FILTER P(X)

∣ πX (ϕ)

R is an event type.

X is a variable.

P(X) is a predicate over variables X = X1, . . . ,Xk .

Example of a CEL formula

ϕ = (B ; (S+ AS X) ; B) FILTER SameStock(X)

Variables in CEL represent sets of events (i.e. complex events)

Complex event logic (CEL)

CEL syntax
ϕ ∶= R ∣ ϕ ; ϕ ∣ ϕ OR ϕ ∣ ϕ + ∣ ϕ AS X ∣ ϕ FILTER P(X) ∣ πX (ϕ)

R is an event type.

X is a variable.

P(X) is a predicate over variables X = X1, . . . ,Xk .

Example of a CEL formula

ϕ = (B ; (S+ AS X) ; B) FILTER SameStock(X)

Variables in CEL represent sets of events (i.e. complex events)

Complex event logic (CEL)

CEL syntax
ϕ ∶= R ∣ ϕ ; ϕ ∣ ϕ OR ϕ ∣ ϕ + ∣ ϕ AS X ∣ ϕ FILTER P(X) ∣ πX (ϕ)

R is an event type.

X is a variable.

P(X) is a predicate over variables X = X1, . . . ,Xk .

Example of a CEL formula

ϕ = (B ; (S+ AS X) ; B) FILTER SameStock(X)

Variables in CEL represent sets of events (i.e. complex events)

Complex event logic (CEL)

CEL syntax
ϕ ∶= R ∣ ϕ ; ϕ ∣ ϕ OR ϕ ∣ ϕ + ∣ ϕ AS X ∣ ϕ FILTER P(X) ∣ πX (ϕ)

R is an event type.

X is a variable.

P(X) is a predicate over variables X = X1, . . . ,Xk .

Example of a CEL formula

ϕ = (B ; (S+ AS X) ; B) FILTER SameStock(X)

Variables in CEL represent sets of events (i.e. complex events)

Complex event logic: semantics

Definition

Given a set of variables X , a valuation V is a pair ([i , j], µ) with µ ∶ X → 2N a function that maps

each variable X ∈ X to a finite set µ(X) ⊆ {i , . . . , j}.

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯Input:

Output: []B0 S2 S4

X Z X ,Y

[]B3 S4

Y X

CEL semantics
The complex event semantics ⟦ϕ⟧ of CEL formula ϕ is obtained from VϕU by returning all events

in the image of µ.

Complex event logic: semantics

Definition

Given a set of variables X , a valuation V is a pair ([i , j], µ) with µ ∶ X → 2N a function that maps

each variable X ∈ X to a finite set µ(X) ⊆ {i , . . . , j}.

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯

Input:

Output:

[]B0 S2 S4

X Z X ,Y

[]B3 S4

Y X

CEL semantics
The complex event semantics ⟦ϕ⟧ of CEL formula ϕ is obtained from VϕU by returning all events

in the image of µ.

Complex event logic: semantics

Definition

Given a set of variables X , a valuation V is a pair ([i , j], µ) with µ ∶ X → 2N a function that maps

each variable X ∈ X to a finite set µ(X) ⊆ {i , . . . , j}.

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯

Input:

Output:

[]B0 S2 S4

X Z X ,Y

[]B3 S4

Y X

CEL semantics
The complex event semantics ⟦ϕ⟧ of CEL formula ϕ is obtained from VϕU by returning all events

in the image of µ.

Complex event logic: semantics

Definition

Given a set of variables X , a valuation V is a pair ([i , j], µ) with µ ∶ X → 2N a function that maps

each variable X ∈ X to a finite set µ(X) ⊆ {i , . . . , j}.

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯Input:

Output: []B0 S2 S4

X Z X ,Y

[]B3 S4

Y X

CEL auxiliary semantics (informally)

The valuation semantics of CEL formula ϕ is a function VϕU that maps a stream S to a set of

valuations.

CEL semantics
The complex event semantics ⟦ϕ⟧ of CEL formula ϕ is obtained from VϕU by returning all events

in the image of µ.

Complex event logic: semantics

Definition

Given a set of variables X , a valuation V is a pair ([i , j], µ) with µ ∶ X → 2N a function that maps

each variable X ∈ X to a finite set µ(X) ⊆ {i , . . . , j}.

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯Input:

Output: []B0 S2 S4

X Z X ,Y

[]B3 S4

Y X

CEL semantics
The complex event semantics ⟦ϕ⟧ of CEL formula ϕ is obtained from VϕU by returning all events

in the image of µ.

Complex event logic: semantics

Definition

Given a set of variables X , a valuation V is a pair ([i , j], µ) with µ ∶ X → 2N a function that maps

each variable X ∈ X to a finite set µ(X) ⊆ {i , . . . , j}.

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯Input:

Output: []B0 S2 S4

X Z X ,Y

[]B3 S4

Y X

CEL semantics
The complex event semantics ⟦ϕ⟧ of CEL formula ϕ is obtained from VϕU by returning all events

in the image of µ.

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

VRU(S) = {V ∣ V (time) = [i , i] ∧ type(S[i]) = R

∧ V (R) = {i} ∧ ∀X ≠ R. V (X) = ∅ }

Example: ϕ = B
B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S): []B0

B

[]B1

B

[]B3

B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

VRU(S) = {V ∣ V (time) = [i , i] ∧ type(S[i]) = R

∧ V (R) = {i} ∧ ∀X ≠ R. V (X) = ∅ }

Example: ϕ = B
B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S): []B0

B

[]B1

B

[]B3

B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

VRU(S) = {V ∣ V (time) = [i , i] ∧ type(S[i]) = R

∧ V (R) = {i} ∧ ∀X ≠ R. V (X) = ∅ }

Example: ϕ = B
B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S):

[]B0

B

[]B1

B

[]B3

B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

VRU(S) = {V ∣ V (time) = [i , i] ∧ type(S[i]) = R

∧ V (R) = {i} ∧ ∀X ≠ R. V (X) = ∅ }

Example: ϕ = B
B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S): []B0

B

[]B1

B

[]B3

B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

VRU(S) = {V ∣ V (time) = [i , i] ∧ type(S[i]) = R

∧ V (R) = {i} ∧ ∀X ≠ R. V (X) = ∅ }

Example: ϕ = B
B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S): []B0

B

[]B1

B

[]B3

B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

VRU(S) = {V ∣ V (time) = [i , i] ∧ type(S[i]) = R

∧ V (R) = {i} ∧ ∀X ≠ R. V (X) = ∅ }

Example: ϕ = B
B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S): []B0

B

[]B1

B

[]B3

B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ1 ; ϕ2U(S) = {V ∣ there exist V1 ∈ Vϕ1U(S),V2 ∈ Vϕ2U(S) s.t. V1(end) < V2(start)
∧ V (time) = [V1(start),V2(end)]
∧ ∀X . V (X) = V1(X) ∪V2(X) }

Example: ϕ = B ; S

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S): []B0 S2

B S

[]B0 S4

B S

[]B1 S4

B S

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ1 ; ϕ2U(S) = {V ∣ there exist V1 ∈ Vϕ1U(S),V2 ∈ Vϕ2U(S)

s.t. V1(end) < V2(start)
∧ V (time) = [V1(start),V2(end)]
∧ ∀X . V (X) = V1(X) ∪V2(X) }

Example: ϕ = B ; S

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S): []B0 S2

B S

[]B0 S4

B S

[]B1 S4

B S

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ1 ; ϕ2U(S) = {V ∣ there exist V1 ∈ Vϕ1U(S),V2 ∈ Vϕ2U(S) s.t. V1(end) < V2(start)

∧ V (time) = [V1(start),V2(end)]
∧ ∀X . V (X) = V1(X) ∪V2(X) }

Example: ϕ = B ; S

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S): []B0 S2

B S

[]B0 S4

B S

[]B1 S4

B S

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ1 ; ϕ2U(S) = {V ∣ there exist V1 ∈ Vϕ1U(S),V2 ∈ Vϕ2U(S) s.t. V1(end) < V2(start)
∧ V (time) = [V1(start),V2(end)]

∧ ∀X . V (X) = V1(X) ∪V2(X) }

Example: ϕ = B ; S

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S): []B0 S2

B S

[]B0 S4

B S

[]B1 S4

B S

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ1 ; ϕ2U(S) = {V ∣ there exist V1 ∈ Vϕ1U(S),V2 ∈ Vϕ2U(S) s.t. V1(end) < V2(start)
∧ V (time) = [V1(start),V2(end)]
∧ ∀X . V (X) = V1(X) ∪V2(X) }

Example: ϕ = B ; S

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S): []B0 S2

B S

[]B0 S4

B S

[]B1 S4

B S

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ1 ; ϕ2U(S) = {V ∣ there exist V1 ∈ Vϕ1U(S),V2 ∈ Vϕ2U(S) s.t. V1(end) < V2(start)
∧ V (time) = [V1(start),V2(end)]
∧ ∀X . V (X) = V1(X) ∪V2(X) }

Example: ϕ = B ; S

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S):

[]B0 S2

B S

[]B0 S4

B S

[]B1 S4

B S

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ1 ; ϕ2U(S) = {V ∣ there exist V1 ∈ Vϕ1U(S),V2 ∈ Vϕ2U(S) s.t. V1(end) < V2(start)
∧ V (time) = [V1(start),V2(end)]
∧ ∀X . V (X) = V1(X) ∪V2(X) }

Example: ϕ = B ; S

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S): []B0 S2

B S

[]B0 S4

B S

[]B1 S4

B S

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ1 ; ϕ2U(S) = {V ∣ there exist V1 ∈ Vϕ1U(S),V2 ∈ Vϕ2U(S) s.t. V1(end) < V2(start)
∧ V (time) = [V1(start),V2(end)]
∧ ∀X . V (X) = V1(X) ∪V2(X) }

Example: ϕ = B ; S

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S): []B0 S2

B S

[]B0 S4

B S

[]B1 S4

B S

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ1 ; ϕ2U(S) = {V ∣ there exist V1 ∈ Vϕ1U(S),V2 ∈ Vϕ2U(S) s.t. V1(end) < V2(start)
∧ V (time) = [V1(start),V2(end)]
∧ ∀X . V (X) = V1(X) ∪V2(X) }

Example: ϕ = B ; S

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S): []B0 S2

B S

[]B0 S4

B S

[]B1 S4

B S

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ1 OR ϕ2U(S) = Vϕ1U(S) ∪ Vϕ2U(S)

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ1 OR ϕ2U(S) = Vϕ1U(S) ∪ Vϕ2U(S)

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ+U(S) =
∞
⋃
k=1

VϕkU(S) where ϕk = ϕ ; ⋯ ; ϕ k-times

Example: ϕ = B ; S+ ; B

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S): []B0 S2 B3

B S B

[]B0 S2 S4 S5 S6 B7

B S S S S B

[]B0 S2 S5 B7

B S S B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ+U(S) =
∞
⋃
k=1

VϕkU(S) where ϕk = ϕ ; ⋯ ; ϕ k-times

Example: ϕ = B ; S+ ; B

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S): []B0 S2 B3

B S B

[]B0 S2 S4 S5 S6 B7

B S S S S B

[]B0 S2 S5 B7

B S S B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ+U(S) =
∞
⋃
k=1

VϕkU(S) where ϕk = ϕ ; ⋯ ; ϕ k-times

Example: ϕ = B ; S+ ; B

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S):

[]B0 S2 B3

B S B

[]B0 S2 S4 S5 S6 B7

B S S S S B

[]B0 S2 S5 B7

B S S B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ+U(S) =
∞
⋃
k=1

VϕkU(S) where ϕk = ϕ ; ⋯ ; ϕ k-times

Example: ϕ = B ; S+ ; B

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S): []B0 S2 B3

B S B

[]B0 S2 S4 S5 S6 B7

B S S S S B

[]B0 S2 S5 B7

B S S B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ+U(S) =
∞
⋃
k=1

VϕkU(S) where ϕk = ϕ ; ⋯ ; ϕ k-times

Example: ϕ = B ; S+ ; B

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S): []B0 S2 B3

B S B

[]B0 S2 S4 S5 S6 B7

B S S S S B

[]B0 S2 S5 B7

B S S B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ+U(S) =
∞
⋃
k=1

VϕkU(S) where ϕk = ϕ ; ⋯ ; ϕ k-times

Example: ϕ = B ; S+ ; B

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S): []B0 S2 B3

B S B

[]B0 S2 S4 S5 S6 B7

B S S S S B

[]B0 S2 S5 B7

B S S B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ AS XU(S) = {V ∣ ∃ V ′ ∈ VϕU(S). V (time) = V ′(time)
∧ V (X) = ⋃Y V ′(Y)
∧ ∀Z ≠ X . V (Z) = V ′(Z) }

Example: ϕ = (B ; S+)

AS X

; B

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S):

[]B0 S2 B3

B S B

[]B0 S2 S4 S5 S6 B7

B S S S S B

[]B0 S2 S5 B7

B S S B

[]B0 S2 B3

B,X S,X B

[]B0 S2 S4 S5 S6 B7

B,X S,X S,X S,X S,X B

[]B0 S2 S5 B7

B,X S,X S,X B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ AS XU(S) = {V ∣ ∃ V ′ ∈ VϕU(S). V (time) = V ′(time)
∧ V (X) = ⋃Y V ′(Y)
∧ ∀Z ≠ X . V (Z) = V ′(Z) }

Example: ϕ = (B ; S+)

AS X

; B

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S):

[]B0 S2 B3

B S B

[]B0 S2 S4 S5 S6 B7

B S S S S B

[]B0 S2 S5 B7

B S S B

[]B0 S2 B3

B,X S,X B

[]B0 S2 S4 S5 S6 B7

B,X S,X S,X S,X S,X B

[]B0 S2 S5 B7

B,X S,X S,X B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ AS XU(S) = {V ∣ ∃ V ′ ∈ VϕU(S). V (time) = V ′(time)
∧ V (X) = ⋃Y V ′(Y)
∧ ∀Z ≠ X . V (Z) = V ′(Z) }

Example: ϕ = (B ; S+)

AS X

; B

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S): []B0 S2 B3

B S B

[]B0 S2 S4 S5 S6 B7

B S S S S B

[]B0 S2 S5 B7

B S S B

[]B0 S2 B3

B,X S,X B

[]B0 S2 S4 S5 S6 B7

B,X S,X S,X S,X S,X B

[]B0 S2 S5 B7

B,X S,X S,X B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ AS XU(S) = {V ∣ ∃ V ′ ∈ VϕU(S). V (time) = V ′(time)
∧ V (X) = ⋃Y V ′(Y)
∧ ∀Z ≠ X . V (Z) = V ′(Z) }

Example: ϕ = (B ; S+) AS X ; B

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

VϕU(S):

[]B0 S2 B3

B S B

[]B0 S2 S4 S5 S6 B7

B S S S S B

[]B0 S2 S5 B7

B S S B

[]B0 S2 B3

B,X S,X B

[]B0 S2 S4 S5 S6 B7

B,X S,X S,X S,X S,X B

[]B0 S2 S5 B7

B,X S,X S,X B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Definition
Consider universal predicates P(X1, . . .Xn) of the form:

P(X1, . . .Xn) ∶= ∀t1 ∈ X1 . . . ∀tn ∈ Xn. PE(t1, . . . , tn)

where PE(t1, . . . , tn) is a first-order predicate over tuples.

Examples

Stock=a(X) ∶= ∀t ∈ X . t[stock] = ‘a‘

SameStock(X1,X2) ∶= ∀t1 ∈ X1.∀t2 ∈ X2. t1[stock] = t2[stock]

The definition of CEL considers any predicate over tuples of sets of events

but we restrict to universal predicates to fit our purposes.

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Definition
Consider universal predicates P(X1, . . .Xn) of the form:

P(X1, . . .Xn) ∶= ∀t1 ∈ X1 . . . ∀tn ∈ Xn. PE(t1, . . . , tn)

where PE(t1, . . . , tn) is a first-order predicate over tuples.

Examples

Stock=a(X) ∶= ∀t ∈ X . t[stock] = ‘a‘

SameStock(X1,X2) ∶= ∀t1 ∈ X1.∀t2 ∈ X2. t1[stock] = t2[stock]

The definition of CEL considers any predicate over tuples of sets of events

but we restrict to universal predicates to fit our purposes.

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Definition
Consider universal predicates P(X1, . . .Xn) of the form:

P(X1, . . .Xn) ∶= ∀t1 ∈ X1 . . . ∀tn ∈ Xn. PE(t1, . . . , tn)

where PE(t1, . . . , tn) is a first-order predicate over tuples.

Examples

Stock=a(X) ∶= ∀t ∈ X . t[stock] = ‘a‘

SameStock(X1,X2) ∶= ∀t1 ∈ X1.∀t2 ∈ X2. t1[stock] = t2[stock]

The definition of CEL considers any predicate over tuples of sets of events

but we restrict to universal predicates to fit our purposes.

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Definition
Consider universal predicates P(X1, . . .Xn) of the form:

P(X1, . . .Xn) ∶= ∀t1 ∈ X1 . . . ∀tn ∈ Xn. PE(t1, . . . , tn)

where PE(t1, . . . , tn) is a first-order predicate over tuples.

Examples

Stock=a(X) ∶= ∀t ∈ X . t[stock] = ‘a‘

SameStock(X1,X2) ∶= ∀t1 ∈ X1.∀t2 ∈ X2. t1[stock] = t2[stock]

The definition of CEL considers any predicate over tuples of sets of events

but we restrict to universal predicates to fit our purposes.

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Definition
Consider universal predicates P(X1, . . .Xn) of the form:

P(X1, . . .Xn) ∶= ∀t1 ∈ X1 . . . ∀tn ∈ Xn. PE(t1, . . . , tn)

where PE(t1, . . . , tn) is a first-order predicate over tuples.

Examples

Stock=a(X) ∶= ∀t ∈ X . t[stock] = ‘a‘

SameStock(X1,X2) ∶= ∀t1 ∈ X1.∀t2 ∈ X2. t1[stock] = t2[stock]

The definition of CEL considers any predicate over tuples of sets of events

but we restrict to universal predicates to fit our purposes.

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ FILTER P(X)U(S) = {V ∣ V ∈ VϕU(S) ∧V (X) ∈ P }

Example: ϕ = ((B ; S+) AS X) ; B)

FILTER Stock=a(X)

B(a)0 B(b)1 S(a)2 B(c)3 S(c)4 S(a)5 S(b)6 B(a)7 B(b)8 B(c)9 ⋯S:

VϕU(S): []B(a)0 S(a)2 B(c)3

B,X S,X B

[]B(a)0 S(a)2 S(c)4 S(a)5 S(b)6 B(a)7

B,X S,X S,X S,X S,X B

[]B(a)0 S(a)2 S(c)4 B(a)7

B,X S,X S,X B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ FILTER P(X)U(S) = {V ∣ V ∈ VϕU(S) ∧V (X) ∈ P }

Example: ϕ = ((B ; S+) AS X) ; B)

FILTER Stock=a(X)

B(a)0 B(b)1 S(a)2 B(c)3 S(c)4 S(a)5 S(b)6 B(a)7 B(b)8 B(c)9 ⋯S:

VϕU(S): []B(a)0 S(a)2 B(c)3

B,X S,X B

[]B(a)0 S(a)2 S(c)4 S(a)5 S(b)6 B(a)7

B,X S,X S,X S,X S,X B

[]B(a)0 S(a)2 S(c)4 B(a)7

B,X S,X S,X B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ FILTER P(X)U(S) = {V ∣ V ∈ VϕU(S) ∧V (X) ∈ P }

Example: ϕ = ((B ; S+) AS X) ; B)

FILTER Stock=a(X)

B(a)0 B(b)1 S(a)2 B(c)3 S(c)4 S(a)5 S(b)6 B(a)7 B(b)8 B(c)9 ⋯S:

VϕU(S):

[]B(a)0 S(a)2 B(c)3

B,X S,X B

[]B(a)0 S(a)2 S(c)4 S(a)5 S(b)6 B(a)7

B,X S,X S,X S,X S,X B

[]B(a)0 S(a)2 S(c)4 B(a)7

B,X S,X S,X B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ FILTER P(X)U(S) = {V ∣ V ∈ VϕU(S) ∧V (X) ∈ P }

Example: ϕ = ((B ; S+) AS X) ; B)

FILTER Stock=a(X)

B(a)0 B(b)1 S(a)2 B(c)3 S(c)4 S(a)5 S(b)6 B(a)7 B(b)8 B(c)9 ⋯S:

VϕU(S): []B(a)0 S(a)2 B(c)3

B,X S,X B

[]B(a)0 S(a)2 S(c)4 S(a)5 S(b)6 B(a)7

B,X S,X S,X S,X S,X B

[]B(a)0 S(a)2 S(c)4 B(a)7

B,X S,X S,X B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

Vϕ FILTER P(X)U(S) = {V ∣ V ∈ VϕU(S) ∧V (X) ∈ P }

Example: ϕ = ((B ; S+) AS X) ; B) FILTER Stock=a(X)
B(a)0 B(b)1 S(a)2 B(c)3 S(c)4 S(a)5 S(b)6 B(a)7 B(b)8 B(c)9 ⋯S:

VϕU(S): []B(a)0 S(a)2 B(c)3

B,X S,X B

[]B(a)0 S(a)2 S(c)4 S(a)5 S(b)6 B(a)7

B,X S,X S,X S,X S,X B

[]B(a)0 S(a)2 S(c)4 B(a)7

B,X S,X S,X B

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

V πX (ϕ)U(S) = {V ∣ ∃ V ′ ∈ VϕU(S). V (time) = V ′(time)
∧ ∀Y ∈ X . V (Y) = V ′(Y)
∧ ∀Y ∉ X . V (Y) = ∅}

Example: ϕ =

πX [

((B ; S+) AS X) ; B) FILTER Stock=a(X)

]

B(a)0 B(b)1 S(a)2 B(c)3 S(c)4 S(a)5 S(b)6 B(a)7 B(b)8 B(c)9 ⋯S:

VϕU(S):

[]B(a)0 S(a)2 S(a)5 B(a)7

B,X S,X S,X B

[]B(a)0 S(a)2 S(a)5

X X X

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

V πX (ϕ)U(S) = {V ∣ ∃ V ′ ∈ VϕU(S). V (time) = V ′(time)
∧ ∀Y ∈ X . V (Y) = V ′(Y)
∧ ∀Y ∉ X . V (Y) = ∅}

Example: ϕ =

πX [

((B ; S+) AS X) ; B) FILTER Stock=a(X)

]

B(a)0 B(b)1 S(a)2 B(c)3 S(c)4 S(a)5 S(b)6 B(a)7 B(b)8 B(c)9 ⋯S:

VϕU(S):

[]B(a)0 S(a)2 S(a)5 B(a)7

B,X S,X S,X B

[]B(a)0 S(a)2 S(a)5

X X X

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

V πX (ϕ)U(S) = {V ∣ ∃ V ′ ∈ VϕU(S). V (time) = V ′(time)
∧ ∀Y ∈ X . V (Y) = V ′(Y)
∧ ∀Y ∉ X . V (Y) = ∅}

Example: ϕ =

πX [

((B ; S+) AS X) ; B) FILTER Stock=a(X)

]

B(a)0 B(b)1 S(a)2 B(c)3 S(c)4 S(a)5 S(b)6 B(a)7 B(b)8 B(c)9 ⋯S:

VϕU(S):

[]B(a)0 S(a)2 S(a)5 B(a)7

B,X S,X S,X B

[]B(a)0 S(a)2 S(a)5

X X X

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

V πX (ϕ)U(S) = {V ∣ ∃ V ′ ∈ VϕU(S). V (time) = V ′(time)
∧ ∀Y ∈ X . V (Y) = V ′(Y)
∧ ∀Y ∉ X . V (Y) = ∅}

Example: ϕ =

πX [

((B ; S+) AS X) ; B) FILTER Stock=a(X)

]

B(a)0 B(b)1 S(a)2 B(c)3 S(c)4 S(a)5 S(b)6 B(a)7 B(b)8 B(c)9 ⋯S:

VϕU(S): []B(a)0 S(a)2 S(a)5 B(a)7

B,X S,X S,X B

[]B(a)0 S(a)2 S(a)5

X X X

Complex event logic: semantics

R ϕ ; ϕ ϕ OR ϕ ϕ+ ϕ AS X ϕ FILTER P(X) πX (ϕ)

V πX (ϕ)U(S) = {V ∣ ∃ V ′ ∈ VϕU(S). V (time) = V ′(time)
∧ ∀Y ∈ X . V (Y) = V ′(Y)
∧ ∀Y ∉ X . V (Y) = ∅}

Example: ϕ = πX [((B ; S+) AS X) ; B) FILTER Stock=a(X)]
B(a)0 B(b)1 S(a)2 B(c)3 S(c)4 S(a)5 S(b)6 B(a)7 B(b)8 B(c)9 ⋯S:

VϕU(S):

[]B(a)0 S(a)2 S(a)5 B(a)7

B,X S,X S,X B

[]B(a)0 S(a)2 S(a)5

X X X

Complex event logic: semantics

CEL semantics (final)

The output of a CEL formula ϕ over a stream S at position n is defined as:

⟦ϕ⟧n(S) = { (V (time),⋃
X

V (X)) ∣ V ∈ VϕU(S),V (end) = n}

All complex events that satisfy the formula are given as output

Complex event logic: semantics

CEL semantics (final)

The output of a CEL formula ϕ over a stream S at position n is defined as:

⟦ϕ⟧n(S) = { (V (time),⋃
X

V (X)) ∣ V ∈ VϕU(S),V (end) = n}

All complex events that satisfy the formula are given as output

Selection strategies

CER systems includes operations to filter complex events:

Selection strategies

usually defined by an algorithm.

Example: skip-till-next-match in SASE

“a further relaxation is to remove the contiguity requirements:

all irrelevant events will be skipped until the next relevant event is read.” [1]

In CEL we declaratively formalize existing selection strategies, and propose new ones [2].

[1] D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman

“On supporting Kleene closure over event streams”, ICDE 2008.

[2] A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren

“A Formal Framework for Complex Event Recognition”, ACM TODS 46(4), 2021.

Selection strategies

CER systems includes operations to filter complex events:

Selection strategies

usually defined by an algorithm.

Example: skip-till-next-match in SASE

“a further relaxation is to remove the contiguity requirements:

all irrelevant events will be skipped until the next relevant event is read.” [1]

In CEL we declaratively formalize existing selection strategies, and propose new ones [2].

[1] D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman

“On supporting Kleene closure over event streams”, ICDE 2008.

[2] A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren

“A Formal Framework for Complex Event Recognition”, ACM TODS 46(4), 2021.

Selection strategies

CER systems includes operations to filter complex events:

Selection strategies

usually defined by an algorithm.

Example: skip-till-next-match in SASE

“a further relaxation is to remove the contiguity requirements:

all irrelevant events will be skipped until the next relevant event is read.” [1]

In CEL we declaratively formalize existing selection strategies, and propose new ones [2].

[1] D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman

“On supporting Kleene closure over event streams”, ICDE 2008.

[2] A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren

“A Formal Framework for Complex Event Recognition”, ACM TODS 46(4), 2021.

A logic for CER

An automaton model for CER

Evaluation algorithm

The CORE complex event recognition engine

Open questions

Outline

Complex event automata

Let P1 be the set of all unary predicates over tuples.

Definition
A complex event automata (CEA) is a tuple A = (Q,∆, I ,F) where:

1. Q is a finite set of states,

2. I and F are the sets of initial and final states, and

3. ∆ ⊆ Q × P1 × {●, ○} ×Q is the transition relation.

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

Complex event automata

Let P1 be the set of all unary predicates over tuples.

Definition
A complex event automata (CEA) is a tuple A = (Q,∆, I ,F) where:

1. Q is a finite set of states,

2. I and F are the sets of initial and final states, and

3. ∆ ⊆ Q × P1 × {●, ○} ×Q is the transition relation.

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0 ● q1 ○ q1 q2●

[]B0 S2⟦A⟧(S):

q0 ● q1 ○ q1 ○ q1 ○ q1 ● q2

[]B0 S4

q0 ● q1 ● q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0 ● q1 ○ q1 q2●

[]B0 S2⟦A⟧(S):

q0 ● q1 ○ q1 ○ q1 ○ q1 ● q2

[]B0 S4

q0 ● q1 ● q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:
q0

● q1 ○ q1 q2●
[]B0 S2⟦A⟧(S):

q0 ● q1 ○ q1 ○ q1 ○ q1 ● q2

[]B0 S4

q0 ● q1 ● q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

● q1

○ q1 q2●
[]B0 S2⟦A⟧(S):

q0 ● q1 ○ q1 ○ q1 ○ q1 ● q2

[]B0 S4

q0 ● q1 ● q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

●

q1

○ q1

q2●
[]B0 S2⟦A⟧(S):

q0 ● q1 ○ q1 ○ q1 ○ q1 ● q2

[]B0 S4

q0 ● q1 ● q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

●

q1

○

q1

q2●

[]B0 S2⟦A⟧(S):

q0 ● q1 ○ q1 ○ q1 ○ q1 ● q2

[]B0 S4

q0 ● q1 ● q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

●

q1

○

q1 q2

●

[]B0 S2⟦A⟧(S):

q0 ● q1 ○ q1 ○ q1 ○ q1 ● q2

[]B0 S4

q0 ● q1 ● q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

●

q1

○

q1 q2

●
[]B0 S2⟦A⟧(S):

q0 ● q1 ○ q1 ○ q1 ○ q1 ● q2

[]B0 S4

q0 ● q1 ● q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

●

q1

○

q1 q2

●

[]B0 S2⟦A⟧(S):

q0

● q1 ○ q1 ○ q1 ○ q1 ● q2

[]B0 S4

q0 ● q1 ● q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

●

q1

○

q1 q2

●

[]B0 S2⟦A⟧(S):

q0

● q1

○ q1 ○ q1 ○ q1 ● q2

[]B0 S4

q0 ● q1 ● q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

●

q1

○

q1 q2

●

[]B0 S2⟦A⟧(S):

q0

●

q1

○ q1

○ q1 ○ q1 ● q2

[]B0 S4

q0 ● q1 ● q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

●

q1

○

q1 q2

●

[]B0 S2⟦A⟧(S):

q0

●

q1

○

q1

○ q1

○ q1 ● q2

[]B0 S4

q0 ● q1 ● q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

●

q1

○

q1 q2

●

[]B0 S2⟦A⟧(S):

q0

●

q1

○

q1

○

q1

○ q1

● q2

[]B0 S4

q0 ● q1 ● q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

●

q1

○

q1 q2

●

[]B0 S2⟦A⟧(S):

q0

●

q1

○

q1

○

q1

○

q1

● q2

[]B0 S4

q0 ● q1 ● q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

●

q1

○

q1 q2

●

[]B0 S2⟦A⟧(S):

q0

●

q1

○

q1

○

q1

○

q1

●

q2

[]B0 S4

q0 ● q1 ● q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

●

q1

○

q1 q2

●

[]B0 S2⟦A⟧(S):

q0

●

q1

○

q1

○

q1

○

q1

●

q2

[]B0 S4

q0 ● q1 ● q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

●

q1

○

q1 q2

●

[]B0 S2⟦A⟧(S):

q0

●

q1

○

q1

○

q1

○

q1

●

q2

[]B0 S4

q0

● q1 ● q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

●

q1

○

q1 q2

●

[]B0 S2⟦A⟧(S):

q0

●

q1

○

q1

○

q1

○

q1

●

q2

[]B0 S4

q0

● q1

● q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

●

q1

○

q1 q2

●

[]B0 S2⟦A⟧(S):

q0

●

q1

○

q1

○

q1

○

q1

●

q2

[]B0 S4

q0

●

q1

● q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

●

q1

○

q1 q2

●

[]B0 S2⟦A⟧(S):

q0

●

q1

○

q1

○

q1

○

q1

●

q2

[]B0 S4

q0

●

q1

●

q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

●

q1

○

q1 q2

●

[]B0 S2⟦A⟧(S):

q0

●

q1

○

q1

○

q1

○

q1

●

q2

[]B0 S4

q0

●

q1

●

q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

●

q1

○

q1 q2

●

[]B0 S2⟦A⟧(S):

q0

●

q1

○

q1

○

q1

○

q1

●

q2

[]B0 S4

q0

●

q1

●

q2

[]B1 S2

q0

Complex event automata: semantics

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

B0 B1 S2 B3 S4 S5 S6 B7 B8 B9 ⋯S:

q0

●

q1

○

q1 q2

●

[]B0 S2⟦A⟧(S):

q0

●

q1

○

q1

○

q1

○

q1

●

q2

[]B0 S4

q0

●

q1

●

q2

[]B1 S2

q0

From CEL to CEA?

Theorem

For every CEL-formula ϕ with unary predicate filters we can construct a CEA A of size linear in ϕ

s.t.

⟦ϕ⟧n(S) = ⟦A⟧n(S) for every stream S and position n.

CEA form a model of the “regular fragment” of CER queries.

Selection strategies can be encoded in the automaton model, see [1].

CEL can be extended to capture the expressive power of CEA, see [1].

[1] A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren

“A Formal Framework for Complex Event Recognition”, ACM TODS 46(4), 2021.

From CEL to CEA?

Theorem

For every CEL-formula ϕ with unary predicate filters we can construct a CEA A of size linear in ϕ

s.t.

⟦ϕ⟧n(S) = ⟦A⟧n(S) for every stream S and position n.

CEA form a model of the “regular fragment” of CER queries.

Selection strategies can be encoded in the automaton model, see [1].

CEL can be extended to capture the expressive power of CEA, see [1].

[1] A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren

“A Formal Framework for Complex Event Recognition”, ACM TODS 46(4), 2021.

From CEL to CEA?

Theorem

For every CEL-formula ϕ with unary predicate filters we can construct a CEA A of size linear in ϕ

s.t.

⟦ϕ⟧n(S) = ⟦A⟧n(S) for every stream S and position n.

CEA form a model of the “regular fragment” of CER queries.

Selection strategies can be encoded in the automaton model, see [1].

CEL can be extended to capture the expressive power of CEA, see [1].

[1] A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren

“A Formal Framework for Complex Event Recognition”, ACM TODS 46(4), 2021.

From CEL to CEA?

Theorem

For every CEL-formula ϕ with unary predicate filters we can construct a CEA A of size linear in ϕ

s.t.

⟦ϕ⟧n(S) = ⟦A⟧n(S) for every stream S and position n.

CEA form a model of the “regular fragment” of CER queries.

Selection strategies can be encoded in the automaton model, see [1].

CEL can be extended to capture the expressive power of CEA, see [1].

[1] A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren

“A Formal Framework for Complex Event Recognition”, ACM TODS 46(4), 2021.

From CEL to CEA?

Theorem

For every CEL-formula ϕ with unary predicate filters we can construct a CEA A of size linear in ϕ

s.t.

⟦ϕ⟧n(S) = ⟦A⟧n(S) for every stream S and position n.

CEA form a model of the “regular fragment” of CER queries.

Selection strategies can be encoded in the automaton model, see [1].

CEL can be extended to capture the expressive power of CEA, see [1].

[1] A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren

“A Formal Framework for Complex Event Recognition”, ACM TODS 46(4), 2021.

A logic for CER

An automaton model for CER

Evaluation algorithm

The CORE complex event recognition engine

Open questions

Outline

The partial match problem in current engines

(Written in

SASE+

language)

FROM StockMarketStream

PATTERN BUY b1, BUY b2, ... , BUY bk

WITHIN 10 seconds

RETURN b1, b2, ..., bk

3 6 9 12 24
101
102
103
104
105
106
107

Sequence length (k)

T
h

ro
u

g
h

p
u

t
(e

/
s)

Stock Market

Esper FlinkCEP SASE OpenCEP

The partial match problem in current engines

(Written in

SASE+

language)

FROM StockMarketStream

PATTERN BUY b1, BUY b2, ... , BUY bk

WITHIN 10 seconds

RETURN b1, b2, ..., bk

3 6 9 12 24
101
102
103
104
105
106
107

Sequence length (k)

T
h

ro
u

g
h

p
u

t
(e

/
s)

Stock Market

Esper FlinkCEP SASE OpenCEP

Overcoming the partial match problem

Main idea
“Separate the streaming evaluation of CEA A into two processes”

1. Update on each event

● We keep a compact representation T of partial outputs (runs).

● For each new event e, we take linear time ∣e ∣ + ∣A∣ to update T , independently of ∣T ∣.

2. Enumeration of outputs (output-linear delay enumeration)

● Whenever an event triggers new recognized complex events, the enumeration phase is

called, independent of the update process.

● All complex events C1,C2, . . . for the current position are enumerated taking O(∣Ci ∣) time

to print Ci .

Overcoming the partial match problem

Main idea
“Separate the streaming evaluation of CEA A into two processes”

1. Update on each event

● We keep a compact representation T of partial outputs (runs).

● For each new event e, we take linear time ∣e ∣ + ∣A∣ to update T , independently of ∣T ∣.

2. Enumeration of outputs (output-linear delay enumeration)

● Whenever an event triggers new recognized complex events, the enumeration phase is

called, independent of the update process.

● All complex events C1,C2, . . . for the current position are enumerated taking O(∣Ci ∣) time

to print Ci .

Overcoming the partial match problem

Main idea
“Separate the streaming evaluation of CEA A into two processes”

1. Update on each event

● We keep a compact representation T of partial outputs (runs).

● For each new event e, we take linear time ∣e ∣ + ∣A∣ to update T , independently of ∣T ∣.

2. Enumeration of outputs (output-linear delay enumeration)

● Whenever an event triggers new recognized complex events, the enumeration phase is

called, independent of the update process.

● All complex events C1,C2, . . . for the current position are enumerated taking O(∣Ci ∣) time

to print Ci .

Overcoming the partial match problem

Main idea
“Separate the streaming evaluation of CEA A into two processes”

1. Update on each event

● We keep a compact representation T of partial outputs (runs).

● For each new event e, we take linear time ∣e ∣ + ∣A∣ to update T , independently of ∣T ∣.

2. Enumeration of outputs (output-linear delay enumeration)

● Whenever an event triggers new recognized complex events, the enumeration phase is

called, independent of the update process.

● All complex events C1,C2, . . . for the current position are enumerated taking O(∣Ci ∣) time

to print Ci .

Overcoming the partial match problem

Main idea
“Separate the streaming evaluation of CEA A into two processes”

1. Update on each event

● We keep a compact representation T of partial outputs (runs).

● For each new event e, we take linear time ∣e ∣ + ∣A∣ to update T , independently of ∣T ∣.

2. Enumeration of outputs (output-linear delay enumeration)

● Whenever an event triggers new recognized complex events, the enumeration phase is

called, independent of the update process.

● All complex events C1,C2, . . . for the current position are enumerated taking O(∣Ci ∣) time

to print Ci .

Overcoming the partial match problem

Main idea
“Separate the streaming evaluation of CEA A into two processes”

1. Update on each event

● We keep a compact representation T of partial outputs (runs).

● For each new event e, we take linear time ∣e ∣ + ∣A∣ to update T , independently of ∣T ∣.

2. Enumeration of outputs (output-linear delay enumeration)

● Whenever an event triggers new recognized complex events, the enumeration phase is

called, independent of the update process.

● All complex events C1,C2, . . . for the current position are enumerated taking O(∣Ci ∣) time

to print Ci .

Overcoming the partial match problem

Main idea
“Separate the streaming evaluation of CEA A into two processes”

1. Update on each event

● We keep a compact representation T of partial outputs (runs).

● For each new event e, we take linear time ∣e ∣ + ∣A∣ to update T , independently of ∣T ∣.

2. Enumeration of outputs (output-linear delay enumeration)

● Whenever an event triggers new recognized complex events, the enumeration phase is

called, independent of the update process.

● All complex events C1,C2, . . . for the current position are enumerated taking O(∣Ci ∣) time

to print Ci .

Overcoming the partial match problem

Main idea
“Separate the streaming evaluation of CEA A into two processes”

1. Update on each event

● We keep a compact representation T of partial outputs (runs).

● For each new event e, we take linear time ∣e ∣ + ∣A∣ to update T , independently of ∣T ∣.

2. Enumeration of outputs (output-linear delay enumeration)

● Whenever an event triggers new recognized complex events, the enumeration phase is

called, independent of the update process.

● All complex events C1,C2, . . . for the current position are enumerated taking O(∣Ci ∣) time

to print Ci .

Overcoming the partial match problem

Main idea
“Separate the streaming evaluation of CEA A into two processes”

1. Update on each event

“Same guarantee as a streaming algorithm.”

2. Enumeration of outputs (output-linear delay enumeration)

● Whenever an event triggers new recognized complex events, the enumeration phase is

called, independent of the update process.

● All complex events C1,C2, . . . for the current position are enumerated taking O(∣Ci ∣) time

to print Ci .

Overcoming the partial match problem

Main idea
“Separate the streaming evaluation of CEA A into two processes”

1. Update on each event

“Same guarantee as a streaming algorithm.”

2. Enumeration of outputs (output-linear delay enumeration)

“Users do not see any difference compared to naively storing all outputs”

If an evaluation algorithm E satisfies 1. and 2.,

we say that E has output-linear delay evaluation.

Overcoming the partial match problem

Main idea
“Separate the streaming evaluation of CEA A into two processes”

1. Update on each event

“Same guarantee as a streaming algorithm.”

2. Enumeration of outputs (output-linear delay enumeration)

“Users do not see any difference compared to naively storing all outputs”

If an evaluation algorithm E satisfies 1. and 2.,

we say that E has output-linear delay evaluation.

CEA evaluation strategy

Definition
Let ε ∈ N ∪ {∞}, let A be a CEA and S a stream. We define

⟦A WITHIN ε⟧(S) ∶= {C ∈ ⟦A⟧(S) ∣ C(end) − C(start) ≤ ε}.

CEA evaluation strategy

Theorem
⟦A WITHIN ε⟧ can be evaluated with output-linear delay, for every CEA A and every ε.

Main ideas of the algorithm:

1. A notion of I/O deterministic CEA.

2. A timed Enumerable Compact Set (tECS) for compactly representing complex events and

enumerating all outputs with window-size ε.

3. An evaluation algorithm for incrementally building tECS given active states of I/O

deterministic CEA.

CEA evaluation strategy

Theorem
⟦A WITHIN ε⟧ can be evaluated with output-linear delay, for every CEA A and every ε.

Main ideas of the algorithm:

1. A notion of I/O deterministic CEA.

2. A timed Enumerable Compact Set (tECS) for compactly representing complex events and

enumerating all outputs with window-size ε.

3. An evaluation algorithm for incrementally building tECS given active states of I/O

deterministic CEA.

CEA evaluation strategy

Theorem
⟦A WITHIN ε⟧ can be evaluated with output-linear delay, for every CEA A and every ε.

Main ideas of the algorithm:

1. A notion of I/O deterministic CEA.

2. A timed Enumerable Compact Set (tECS) for compactly representing complex events and

enumerating all outputs with window-size ε.

3. An evaluation algorithm for incrementally building tECS given active states of I/O

deterministic CEA.

CEA evaluation strategy

Theorem
⟦A WITHIN ε⟧ can be evaluated with output-linear delay, for every CEA A and every ε.

Main ideas of the algorithm:

1. A notion of I/O deterministic CEA.

2. A timed Enumerable Compact Set (tECS) for compactly representing complex events and

enumerating all outputs with window-size ε.

3. An evaluation algorithm for incrementally building tECS given active states of I/O

deterministic CEA.

I/O determinism

Definition

A CEA is I/O deterministic if for every pair of transitions qP1/m1ÐÐ→q1 and qP2/m2ÐÐ→q2 from the same

state q, if P1 ∩ P2 ≠ ∅ then m1 /= m2.

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

I/O determinism

Definition

A CEA is I/O deterministic if for every pair of transitions qP1/m1ÐÐ→q1 and qP2/m2ÐÐ→q2 from the same

state q, if P1 ∩ P2 ≠ ∅ then m1 /= m2.

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

“Every recognized complex event has only one run that defines it.”

I/O determinism

Definition

A CEA is I/O deterministic if for every pair of transitions qP1/m1ÐÐ→q1 and qP2/m2ÐÐ→q2 from the same

state q, if P1 ∩ P2 ≠ ∅ then m1 /= m2.

q0 q1 q2

PB ∣ ● PS ∣ ●

TRUE ∣ ○

PB ∶= { t ∣ type(t) = B} PS ∶= { t ∣ type(t) = S}

Proposition

CEA can be I/O-determinized in exponential time.

Timed Enumerable Compact Sets

Definition
A timed Enumerable Compact Set (tECS) is a DAG with three kinds of nodes: bottom nodes,

position nodes, and union nodes, with out-degree 0, 1, and 2, respectively.

0 0

1 1

∨
2 4

5 ∨ 6

bottom nodes

position nodes union nodesleft union childright union child

Timed Enumerable Compact Sets

Definition
A timed Enumerable Compact Set (tECS) is a DAG with three kinds of nodes: bottom nodes,

position nodes, and union nodes, with out-degree 0, 1, and 2, respectively.

0 0

1 1

∨
2 4

5 ∨ 6

bottom nodes

position nodes union nodesleft union childright union child

Timed Enumerable Compact Sets

Definition
A timed Enumerable Compact Set (tECS) is a DAG with three kinds of nodes: bottom nodes,

position nodes, and union nodes, with out-degree 0, 1, and 2, respectively.

0 0

1 1

∨
2 4

5 ∨ 6

bottom nodes

position nodes

union nodesleft union childright union child

Timed Enumerable Compact Sets

Definition
A timed Enumerable Compact Set (tECS) is a DAG with three kinds of nodes: bottom nodes,

position nodes, and union nodes, with out-degree 0, 1, and 2, respectively.

0 0

1 1

∨
2 4

5 ∨ 6

bottom nodes

position nodes

union nodes

left union childright union child

Timed Enumerable Compact Sets

Definition
A timed Enumerable Compact Set (tECS) is a DAG with three kinds of nodes: bottom nodes,

position nodes, and union nodes, with out-degree 0, 1, and 2, respectively.

0 0

1 1

∨
2 4

5 ∨ 6

bottom nodes

position nodes union nodes

left union child

right union child

Timed Enumerable Compact Sets

Definition
A timed Enumerable Compact Set (tECS) is a DAG with three kinds of nodes: bottom nodes,

position nodes, and union nodes, with out-degree 0, 1, and 2, respectively.

0 0

1 1

∨
2 4

5 ∨ 6

bottom nodes

position nodes union nodesleft union child

right union child

Timed Enumerable Compact Sets: semantics

Definition
A open complex event is a pair (i ,C) with i ∈ N and C ⊆ N finite.

Semantics:

Every path from a node to a bottom node defines an open complex event.

A node n hence encodes a set ⟦n⟧ of open complex events.

0 0

1 1

∨
2 4

5 ∨ 6

Open complex event: (0,{0,5,6})Open complex event: (0,{0,2,6})Open complex event: (1,{1,2,6})Open complex event: (1,{1,2})

Timed Enumerable Compact Sets: semantics

Definition
A open complex event is a pair (i ,C) with i ∈ N and C ⊆ N finite.

Semantics:

Every path from a node to a bottom node defines an open complex event.

A node n hence encodes a set ⟦n⟧ of open complex events.

0 0

1 1

∨
2 4

5 ∨ 6

Open complex event: (0,{0,5,6})Open complex event: (0,{0,2,6})Open complex event: (1,{1,2,6})Open complex event: (1,{1,2})

Timed Enumerable Compact Sets: semantics

Definition
A open complex event is a pair (i ,C) with i ∈ N and C ⊆ N finite.

Semantics:

Every path from a node to a bottom node defines an open complex event.

A node n hence encodes a set ⟦n⟧ of open complex events.

0 0

1 1

∨
2 4

5 ∨ 6

Open complex event: (0,{0,5,6})

Open complex event: (0,{0,2,6})Open complex event: (1,{1,2,6})Open complex event: (1,{1,2})

Timed Enumerable Compact Sets: semantics

Definition
A open complex event is a pair (i ,C) with i ∈ N and C ⊆ N finite.

Semantics:

Every path from a node to a bottom node defines an open complex event.

A node n hence encodes a set ⟦n⟧ of open complex events.

0 0

1 1

∨
2 4

5 ∨ 6

Open complex event: (0,{0,5,6})

Open complex event: (0,{0,2,6})

Open complex event: (1,{1,2,6})Open complex event: (1,{1,2})

Timed Enumerable Compact Sets: semantics

Definition
A open complex event is a pair (i ,C) with i ∈ N and C ⊆ N finite.

Semantics:

Every path from a node to a bottom node defines an open complex event.

A node n hence encodes a set ⟦n⟧ of open complex events.

0 0

1 1

∨
2 4

5 ∨ 6

Open complex event: (0,{0,5,6})Open complex event: (0,{0,2,6})

Open complex event: (1,{1,2,6})

Open complex event: (1,{1,2})

Timed Enumerable Compact Sets: semantics

Definition
A open complex event is a pair (i ,C) with i ∈ N and C ⊆ N finite.

Semantics:

Every path from a node to a bottom node defines an open complex event.

A node n hence encodes a set ⟦n⟧ of open complex events.

0 0

1 1

∨
2 4

5 ∨ 6

Open complex event: (0,{0,5,6})Open complex event: (0,{0,2,6})Open complex event: (1,{1,2,6})

Open complex event: (1,{1,2})

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ε and j ∈ N we want to be able to enumerate

⟦n⟧ε(j) ∶= {

([i , j],C)

∣ (i ,C) ∈ ⟦n⟧

, j − i ≤ ε

}

with output-linear delay.

In order to allow this, we need the following structure on tECS:

For every node n, distinct paths starting at n encode distinct open complex events.

Nodes store their max-start time: the largest time value of any bottom node reachable from n.

The children of union nodes u are max-start sorted: max(left(u)) ≥ max(right(u)).

There is a constant bounding the length of chains of union left-child paths.

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ε and j ∈ N we want to be able to enumerate

⟦n⟧ε(j) ∶= {

([i , j],C)

∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

In order to allow this, we need the following structure on tECS:

For every node n, distinct paths starting at n encode distinct open complex events.

Nodes store their max-start time: the largest time value of any bottom node reachable from n.

The children of union nodes u are max-start sorted: max(left(u)) ≥ max(right(u)).

There is a constant bounding the length of chains of union left-child paths.

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ε and j ∈ N we want to be able to enumerate

⟦n⟧ε(j) ∶= {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

In order to allow this, we need the following structure on tECS:

For every node n, distinct paths starting at n encode distinct open complex events.

Nodes store their max-start time: the largest time value of any bottom node reachable from n.

The children of union nodes u are max-start sorted: max(left(u)) ≥ max(right(u)).

There is a constant bounding the length of chains of union left-child paths.

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ε and j ∈ N we want to be able to enumerate

⟦n⟧ε(j) ∶= {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

In order to allow this, we need the following structure on tECS:

For every node n, distinct paths starting at n encode distinct open complex events.

Nodes store their max-start time: the largest time value of any bottom node reachable from n.

The children of union nodes u are max-start sorted: max(left(u)) ≥ max(right(u)).

There is a constant bounding the length of chains of union left-child paths.

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ε and j ∈ N we want to be able to enumerate

⟦n⟧ε(j) ∶= {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

In order to allow this, we need the following structure on tECS:

For every node n, distinct paths starting at n encode distinct open complex events.

Nodes store their max-start time: the largest time value of any bottom node reachable from n.

The children of union nodes u are max-start sorted: max(left(u)) ≥ max(right(u)).

There is a constant bounding the length of chains of union left-child paths.

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ε and j ∈ N we want to be able to enumerate

⟦n⟧ε(j) ∶= {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

In order to allow this, we need the following structure on tECS:

For every node n, distinct paths starting at n encode distinct open complex events.

Nodes store their max-start time: the largest time value of any bottom node reachable from n.

The children of union nodes u are max-start sorted: max(left(u)) ≥ max(right(u)).

There is a constant bounding the length of chains of union left-child paths.

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ε and j ∈ N we want to be able to enumerate

⟦n⟧ε(j) ∶= {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

In order to allow this, we need the following structure on tECS:

For every node n, distinct paths starting at n encode distinct open complex events.

Nodes store their max-start time: the largest time value of any bottom node reachable from n.

The children of union nodes u are max-start sorted: max(left(u)) ≥ max(right(u)).

There is a constant bounding the length of chains of union left-child paths.

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ε and j ∈ N we want to be able to enumerate

⟦n⟧ε(j) ∶= {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

In order to allow this, we need the following structure on tECS:

For every node n, distinct paths starting at n encode distinct open complex events.

Nodes store their max-start time: the largest time value of any bottom node reachable from n.

The children of union nodes u are max-start sorted: max(left(u)) ≥ max(right(u)).

There is a constant bounding the length of chains of union left-child paths.

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ε and j ∈ N we want to be able to enumerate

⟦n⟧ε(j) ∶= {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

In order to allow this, we need the following structure on tECS:

For every node n, distinct paths starting at n encode distinct open complex events.

Nodes store their max-start time: the largest time value of any bottom node reachable from n.

The children of union nodes u are max-start sorted: max(left(u)) ≥ max(right(u)).

There is a constant bounding the length of chains of union left-child paths.

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Timed Enumerable Compact Sets: enumeration

For each position node n, window size ε and j ∈ N we want to be able to enumerate

⟦n⟧ε(j) ∶= {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

In order to allow this, we need the following structure on tECS:

For every node n, distinct paths starting at n encode distinct open complex events.

Nodes store their max-start time: the largest time value of any bottom node reachable from n.

The children of union nodes u are max-start sorted: max(left(u)) ≥ max(right(u)).

There is a constant bounding the length of chains of union left-child paths.

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Timed Enumerable Compact Sets: enumeration

Theorem
Under the previous conditions, we may enumerate

⟦n⟧ε(j) = {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

Example: n = 6, ε = 5, j = 6

output ([1,6],{1,5,6})output ([1,6],{1,2,6})

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Enumeration algorithm:

Do depth-first search, starting from n.

Visit left-children of union nodes before right-children.

Before moving to a child c, check that j −max(c) ≤ ε.

Timed Enumerable Compact Sets: enumeration

Theorem
Under the previous conditions, we may enumerate

⟦n⟧ε(j) = {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

Example: n = 6, ε = 5, j = 6

output ([1,6],{1,5,6})output ([1,6],{1,2,6})

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Enumeration algorithm:

Do depth-first search, starting from n.

Visit left-children of union nodes before right-children.

Before moving to a child c, check that j −max(c) ≤ ε.

Timed Enumerable Compact Sets: enumeration

Theorem
Under the previous conditions, we may enumerate

⟦n⟧ε(j) = {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

Example: n = 6, ε = 5, j = 6

output ([1,6],{1,5,6})output ([1,6],{1,2,6})

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Enumeration algorithm:

Do depth-first search, starting from n.

Visit left-children of union nodes before right-children.

Before moving to a child c, check that j −max(c) ≤ ε.

Timed Enumerable Compact Sets: enumeration

Theorem
Under the previous conditions, we may enumerate

⟦n⟧ε(j) = {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

Example: n = 6, ε = 5, j = 6

output ([1,6],{1,5,6})output ([1,6],{1,2,6})

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Enumeration algorithm:

Do depth-first search, starting from n.

Visit left-children of union nodes before right-children.

Before moving to a child c, check that j −max(c) ≤ ε.

Timed Enumerable Compact Sets: enumeration

Theorem
Under the previous conditions, we may enumerate

⟦n⟧ε(j) = {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

Example: n = 6, ε = 5, j = 6

output ([1,6],{1,5,6})output ([1,6],{1,2,6})

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Enumeration algorithm:

Do depth-first search, starting from n.

Visit left-children of union nodes before right-children.

Before moving to a child c, check that j −max(c) ≤ ε.

Timed Enumerable Compact Sets: enumeration

Theorem
Under the previous conditions, we may enumerate

⟦n⟧ε(j) = {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

Example: n = 6, ε = 5, j = 6

output ([1,6],{1,5,6})output ([1,6],{1,2,6})

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Enumeration algorithm:

Do depth-first search, starting from n.

Visit left-children of union nodes before right-children.

Before moving to a child c, check that j −max(c) ≤ ε.

Timed Enumerable Compact Sets: enumeration

Theorem
Under the previous conditions, we may enumerate

⟦n⟧ε(j) = {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

Example: n = 6, ε = 5, j = 6

output ([1,6],{1,5,6})output ([1,6],{1,2,6})

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Enumeration algorithm:

Do depth-first search, starting from n.

Visit left-children of union nodes before right-children.

Before moving to a child c, check that j −max(c) ≤ ε.

Timed Enumerable Compact Sets: enumeration

Theorem
Under the previous conditions, we may enumerate

⟦n⟧ε(j) = {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

Example: n = 6, ε = 5, j = 6

output ([1,6],{1,5,6})

output ([1,6],{1,2,6})

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Enumeration algorithm:

Do depth-first search, starting from n.

Visit left-children of union nodes before right-children.

Before moving to a child c, check that j −max(c) ≤ ε.

Timed Enumerable Compact Sets: enumeration

Theorem
Under the previous conditions, we may enumerate

⟦n⟧ε(j) = {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

Example: n = 6, ε = 5, j = 6

output ([1,6],{1,5,6})output ([1,6],{1,2,6})

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Enumeration algorithm:

Do depth-first search, starting from n.

Visit left-children of union nodes before right-children.

Before moving to a child c, check that j −max(c) ≤ ε.

Timed Enumerable Compact Sets: enumeration

Theorem
Under the previous conditions, we may enumerate

⟦n⟧ε(j) = {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

Example: n = 6, ε = 5, j = 6

output ([1,6],{1,5,6})output ([1,6],{1,2,6})

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Enumeration algorithm:

Do depth-first search, starting from n.

Visit left-children of union nodes before right-children.

Before moving to a child c, check that j −max(c) ≤ ε.

Timed Enumerable Compact Sets: enumeration

Theorem
Under the previous conditions, we may enumerate

⟦n⟧ε(j) = {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

Example: n = 6, ε = 5, j = 6

output ([1,6],{1,5,6})output ([1,6],{1,2,6})

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Enumeration algorithm:

Do depth-first search, starting from n.

Visit left-children of union nodes before right-children.

Before moving to a child c, check that j −max(c) ≤ ε.

Timed Enumerable Compact Sets: enumeration

Theorem
Under the previous conditions, we may enumerate

⟦n⟧ε(j) = {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

Example: n = 6, ε = 5, j = 6

output ([1,6],{1,5,6})output ([1,6],{1,2,6})

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Enumeration algorithm:

Do depth-first search, starting from n.

Visit left-children of union nodes before right-children.

Before moving to a child c, check that j −max(c) ≤ ε.

Timed Enumerable Compact Sets: enumeration

Theorem
Under the previous conditions, we may enumerate

⟦n⟧ε(j) = {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

Example: n = 6, ε = 5, j = 6

output ([1,6],{1,5,6})output ([1,6],{1,2,6})

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Enumeration algorithm:

Do depth-first search, starting from n.

Visit left-children of union nodes before right-children.

Before moving to a child c, check that j −max(c) ≤ ε.

Timed Enumerable Compact Sets: enumeration

Theorem
Under the previous conditions, we may enumerate

⟦n⟧ε(j) = {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

Example: n = 6, ε = 5, j = 6

output ([1,6],{1,5,6})output ([1,6],{1,2,6})

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Enumeration algorithm:

Do depth-first search, starting from n.

Visit left-children of union nodes before right-children.

Before moving to a child c, check that j −max(c) ≤ ε.

Timed Enumerable Compact Sets: enumeration

Theorem
Under the previous conditions, we may enumerate

⟦n⟧ε(j) = {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

Example: n = 6, ε = 5, j = 6

output ([1,6],{1,5,6})output ([1,6],{1,2,6})

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Enumeration algorithm:

Do depth-first search, starting from n.

Visit left-children of union nodes before right-children.

Before moving to a child c, check that j −max(c) ≤ ε.

Timed Enumerable Compact Sets: enumeration

Theorem
Under the previous conditions, we may enumerate

⟦n⟧ε(j) = {([i , j],C) ∣ (i ,C) ∈ ⟦n⟧, j − i ≤ ε}

with output-linear delay.

Example: n = 6, ε = 5, j = 6

output ([1,6],{1,5,6})

output ([1,6],{1,2,6})

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1 1 1

Enumeration algorithm:

Do depth-first search, starting from n.

Visit left-children of union nodes before right-children.

Before moving to a child c, check that j −max(c) ≤ ε.

Evaluation Algorithm by Example

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6

0

0

1

1

q2∨

2

q3
4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6

0

0

1

1

q2∨

2

q3
4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6

0

0

1

1

q2∨

2

q3
4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3
4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

q2

1

1

q2∨

2

q3
4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

q2

1

1

q2∨

2

q3
4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

q2

1

1

q2∨

2

q3
4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

q2

1

1

q2∨

2

q3
4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2

∨

2

q3
4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2

∨

2

q3
4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2

∨

2

q3
4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3
4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3

4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3

4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3

4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3

4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3

4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3

4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3

4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3
4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3
4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3
4

q4

→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3
4

q4

→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3
4

q4

→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3

4

q4→ enumerate!

∨

5

q3

∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3

4

q4→ enumerate!

∨

5

q3

∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3

4

q4→ enumerate!

∨

5

q3

∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3

4

q4→ enumerate!

∨

5

q3∨

6

q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3

4

q4→ enumerate!

∨

5

q3∨

6 q4

→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

Evaluation Algorithm by Example

q1 q2 q3 q4

[
SELL

MSFT

> 100
] ∣ ● [

SELL

INTL

∗

] ∣ ●

TRUE ∣ ○

[
SELL

AMZN

< 2000
] ∣ ●

TRUE ∣ ○

CEA:

[
SELL

MSFT

101
] [

SELL

MSFT

102
] [

SELL

INTL

80
] [

BUY

INTL

80
] [

SELL

AMZN

1900
] [

SELL

INTL

81
] [

SELL

AMZN

1920
] ⋯Stream:

0 1 2 3 4 5 6 0

0

1

1

q2∨

2

q3

4

q4→ enumerate!

∨

5

q3∨

6 q4→ enumerate!

tECS:

Algorithm crux:

Incrementally build the (well-structured) tECS to represents all open complex events up to the

current event.

Maintain the set of active CEA states, and the open complex events they correspond to.

Crucially, all bookkeeping is O(∣CEA∣), implying that we only take time O(∣CEA∣) per event.

This is constant in data complexity.

A logic for CER

An automaton model for CER

Evaluation algorithm

The CORE complex event recognition engine

Open questions

Outline

CORE: COmplex event Recognition Engine

An open-source implementation [1] of our approach.

1. Practical query language (CEQL) based on unary CEL.

2. Evaluation in constant update-time and output-linear delay, based on CEA.

3. CORE’s performance is stable w.r.t query and time-window size.

4. CORE outperforms existing systems by up to 5 orders of magnitude.

[1] https://github.com/CORE-cer/CORE

https://github.com/CORE-cer/CORE

CORE: COmplex event Recognition Engine

An open-source implementation [1] of our approach.

1. Practical query language (CEQL) based on unary CEL.

2. Evaluation in constant update-time and output-linear delay, based on CEA.

3. CORE’s performance is stable w.r.t query and time-window size.

4. CORE outperforms existing systems by up to 5 orders of magnitude.

[1] https://github.com/CORE-cer/CORE

https://github.com/CORE-cer/CORE

CEQL: Complex Event Query language

SELECT < list-of-variables >
FROM < list-of-streams >
WHERE < CEL-formula >
FILTER < list-of-filters >
[PARTITION BY < list-of-attributes >]

[WITHIN < time-value >]

Examples (Stock Market)

1. SELECT * FROM Stocks

WHERE SELL as msft; SELL as intel; SELL as amzn

FILTER msft[name="MSFT"] AND msft[price > 100]

AND intel[name="INTL"]

AND amzn[name="AMZN"] AND amzn[price < 2000]

[
SELL

MSFT

101
][

SELL

MSFT

102
][

SELL

INTL

80
] [

BUY

INTL

80
][

SELL

AMZN

1900
][

BUY

INTL

81
][

BUY

AMZN

1920
] ⋯

(type)

(name)

(price)
Stream:

CEQL: Complex Event Query language

SELECT < list-of-variables >
FROM < list-of-streams >
WHERE < CEL-formula >
FILTER < list-of-filters >
[PARTITION BY < list-of-attributes >]

[WITHIN < time-value >]

Examples (Stock Market)

1. SELECT * FROM Stocks

WHERE SELL as msft; SELL as intel; SELL as amzn

FILTER msft[name="MSFT"] AND msft[price > 100]

AND intel[name="INTL"]

AND amzn[name="AMZN"] AND amzn[price < 2000]

[
SELL

MSFT

101
][

SELL

MSFT

102
][

SELL

INTL

80
] [

BUY

INTL

80
][

SELL

AMZN

1900
][

BUY

INTL

81
][

BUY

AMZN

1920
] ⋯

(type)

(name)

(price)
Stream:

CEQL: Complex Event Query language

SELECT < list-of-variables >
FROM < list-of-streams >
WHERE < CEL-formula >
FILTER < list-of-filters >
[PARTITION BY < list-of-attributes >]

[WITHIN < time-value >]

Examples (Stock Market)

1. SELECT * FROM Stocks

WHERE SELL as msft; SELL as intel; SELL as amzn

FILTER msft[name="MSFT"] AND msft[price > 100]

AND intel[name="INTL"]

AND amzn[name="AMZN"] AND amzn[price < 2000]

[
SELL

MSFT

101
][

SELL

MSFT

102
][

SELL

INTL

80
] [

BUY

INTL

80
][

SELL

AMZN

1900
][

BUY

INTL

81
][

BUY

AMZN

1920
] ⋯

(type)

(name)

(price)
Stream:

CEQL: Complex Event Query language

SELECT < list-of-variables >
FROM < list-of-streams >
WHERE < CEL-formula >
FILTER < list-of-filters >
[PARTITION BY < list-of-attributes >]

[WITHIN < time-value >]

Examples (Stock Market)

1. SELECT * FROM Stocks

WHERE SELL as msft; SELL as intel; SELL as amzn

FILTER msft[name="MSFT"] AND msft[price > 100]

AND intel[name="INTL"]

AND amzn[name="AMZN"] AND amzn[price < 2000]

[
SELL

MSFT

101
][

SELL

MSFT

102
][

SELL

INTL

80
] [

BUY

INTL

80
][

SELL

AMZN

1900
][

BUY

INTL

81
][

BUY

AMZN

1920
] ⋯

(type)

(name)

(price)
Stream:

CEQL: Complex Event Query language

SELECT < list-of-variables >
FROM < list-of-streams >
WHERE < CEL-formula >
FILTER < list-of-filters >
[PARTITION BY < list-of-attributes >]

[WITHIN < time-value >]

Examples (Stock Market)

1. SELECT * FROM Stocks

WHERE SELL as msft; SELL as intel; SELL as amzn

FILTER msft[name="MSFT"] AND msft[price > 100]

AND intel[name="INTL"]

AND amzn[name="AMZN"] AND amzn[price < 2000]

[
SELL

MSFT

101
][

SELL

MSFT

102
][

SELL

INTL

80
] [

BUY

INTL

80
][

SELL

AMZN

1900
][

BUY

INTL

81
][

BUY

AMZN

1920
] ⋯

(type)

(name)

(price)
Stream:

CEQL: Complex Event Query language

SELECT < list-of-variables >
FROM < list-of-streams >
WHERE < CEL-formula >
FILTER < list-of-filters >
[PARTITION BY < list-of-attributes >]

[WITHIN < time-value >]

Examples (Stock Market)

1. SELECT * FROM Stocks

WHERE SELL as msft; SELL as intel; SELL as amzn

FILTER msft[name="MSFT"] AND msft[price > 100]

AND intel[name="INTL"]

AND amzn[name="AMZN"] AND amzn[price < 2000]

[
SELL

MSFT

101
][

SELL

MSFT

102
][

SELL

INTL

80
] [

BUY

INTL

80
][

SELL

AMZN

1900
][

BUY

INTL

81
][

BUY

AMZN

1920
] ⋯

(type)

(name)

(price)
Stream:

CEQL: Complex Event Query language

SELECT < list-of-variables >
FROM < list-of-streams >
WHERE < CEL-formula >
FILTER < list-of-filters >
[PARTITION BY < list-of-attributes >]

[WITHIN < time-value >]

Examples (Stock Market)

2. SELECT s, b FROM Stocks

WHERE (BUY or SELL) as s; (BUY or SELL) as b

PARTITION BY [name]

WITHIN 5 minute

⎡⎢⎢⎢⎢⎢⎣

SELL

MSFT

101

10:00

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

SELL

MSFT

102

10:02

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

SELL

INTL

80

10:10

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

BUY

INTL

80

10:14

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

SELL

AMZN

1900

10:25

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

BUY

INTL

81

10:30

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

BUY

AMZN

1920

10:33

⎤⎥⎥⎥⎥⎥⎦
⋯

(type)

(name)

(price)

(time)

Stream:

CEQL: Complex Event Query language

SELECT < list-of-variables >
FROM < list-of-streams >
WHERE < CEL-formula >
FILTER < list-of-filters >
[PARTITION BY < list-of-attributes >]

[WITHIN < time-value >]

Examples (Stock Market)

2. SELECT s, b FROM Stocks

WHERE (BUY or SELL) as s; (BUY or SELL) as b

PARTITION BY [name]

WITHIN 5 minute

⎡⎢⎢⎢⎢⎢⎣

SELL

MSFT

101

10:00

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

SELL

MSFT

102

10:02

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

SELL

INTL

80

10:10

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

BUY

INTL

80

10:14

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

SELL

AMZN

1900

10:25

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

BUY

INTL

81

10:30

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

BUY

AMZN

1920

10:33

⎤⎥⎥⎥⎥⎥⎦
⋯

(type)

(name)

(price)

(time)

Stream:

CEQL: Complex Event Query language

SELECT < list-of-variables >
FROM < list-of-streams >
WHERE < CEL-formula >
FILTER < list-of-filters >
[PARTITION BY < list-of-attributes >]

[WITHIN < time-value >]

Examples (Stock Market)

2. SELECT s, b FROM Stocks

WHERE (BUY or SELL) as s; (BUY or SELL) as b

PARTITION BY [name]

WITHIN 5 minute

⎡⎢⎢⎢⎢⎢⎣

SELL

MSFT

101

10:00

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

SELL

MSFT

102

10:02

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

SELL

INTL

80

10:10

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

BUY

INTL

80

10:14

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

SELL

AMZN

1900

10:25

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

BUY

INTL

81

10:30

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

BUY

AMZN

1920

10:33

⎤⎥⎥⎥⎥⎥⎦
⋯

(type)

(name)

(price)

(time)

Stream:

CEQL: Complex Event Query language

SELECT < list-of-variables >
FROM < list-of-streams >
WHERE < CEL-formula >
FILTER < list-of-filters >
[PARTITION BY < list-of-attributes >]

[WITHIN < time-value >]

Examples (Stock Market)

2. SELECT s, b FROM Stocks

WHERE (BUY or SELL) as s; (BUY or SELL) as b

PARTITION BY [name]

WITHIN 5 minute

⎡⎢⎢⎢⎢⎢⎣

SELL

MSFT

101

10:00

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

SELL

MSFT

102

10:02

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

SELL

INTL

80

10:10

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

BUY

INTL

80

10:14

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

SELL

AMZN

1900

10:25

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

BUY

INTL

81

10:30

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

BUY

AMZN

1920

10:33

⎤⎥⎥⎥⎥⎥⎦
⋯

(type)

(name)

(price)

(time)

Stream:

Experiments: Sequence queries

101
102
103
104
105
106
107

T
h

ro
u

g
h

p
u

t
(e

/
s)

Experiments: Sequence queries

101
102
103
104
105
106
107

T
h

ro
u

g
h

p
u

t
(e

/
s)

Stock Market Smart Homes Taxi Trips

Experiments: Sequence queries

3 6 9 12 24
101
102
103
104
105
106
107

T
h

ro
u

g
h

p
u

t
(e

/
s)

Stock Market

3 6 9 12 24

Smart Homes

3 6 9 12 24

Taxi Trips

SELECT * FROM Dataset

WHERE A1 ; A2 ; ... ; An

FILTER A1[filter1] AND ... AND An[filtern]

WITHIN T

We use sequences of length n = 3,6,9,12,24.

Experiments: Sequence queries

3 6 9 12 24
101
102
103
104
105
106
107

T
h

ro
u

g
h

p
u

t
(e

/
s)

Stock Market

3 6 9 12 24

Smart Homes

3 6 9 12 24

Taxi Trips

SELECT * FROM Dataset

WHERE A1 ; A2 ; ... ; An

FILTER A1[filter1] AND ... AND An[filtern]

WITHIN T

We use sequences of length n = 3,6,9,12,24.

Experiments: Sequence queries

3 6 9 12 24
101
102
103
104
105
106
107

T
h

ro
u

g
h

p
u

t
(e

/
s)

Stock Market

Esper FlinkCEP SASE OpenCEP CORE

3 6 9 12 24

Smart Homes

3 6 9 12 24

Taxi Trips

1. Esper (industry)

2. FlinkCEP (industry)

3. SASE (academy)

4. OpenCEP (academy)

5. CORE

Experiments: Sequence queries

3 6 9 12 24
101
102
103
104
105
106
107

T
h

ro
u

g
h

p
u

t
(e

/
s)

Stock Market

Esper FlinkCEP SASE OpenCEP CORE

3 6 9 12 24

Smart Homes

3 6 9 12 24

Taxi Trips

Experiments: Sequence queries

3 6 9 12 24
101
102
103
104
105
106
107

T
h

ro
u

g
h

p
u

t
(e

/
s)

Stock Market

Esper FlinkCEP SASE OpenCEP CORE

3 6 9 12 24

Smart Homes

3 6 9 12 24

Taxi Trips

CORE is up to 4 orders of magnitude faster than other systems

Experiments: Sequence queries

3 6 9 12 24
101
102
103
104
105
106
107

T
h

ro
u

g
h

p
u

t
(e

/
s)

Stock Market

Esper FlinkCEP SASE OpenCEP CORE

3 6 9 12 24

Smart Homes

3 6 9 12 24

Taxi Trips

CORE is up to 4 orders of magnitude faster than other systems

Experiments: Sequence queries (memory)

3 6 9 12 24
101
102
103
104
105
106
107

M
em

o
ry

(K
B

)

Stock Market

Esper FlinkCEP SASE OpenCEP CORE

3 6 9 12 24

Smart Homes

3 6 9 12 24

Taxi Trips

Experiments: Sequence queries (memory)

3 6 9 12 24
101
102
103
104
105
106
107

M
em

o
ry

(K
B

)

Stock Market

Esper FlinkCEP SASE OpenCEP CORE

3 6 9 12 24

Smart Homes

3 6 9 12 24

Taxi Trips

CORE is stable in the memory usage

Experiments: Sequence queries (memory)

3 6 9 12 24
101
102
103
104
105
106
107

M
em

o
ry

(K
B

)

Stock Market

Esper FlinkCEP SASE OpenCEP CORE

3 6 9 12 24

Smart Homes

3 6 9 12 24

Taxi Trips

CORE is stable in the memory usage

Experiments: Window queries

101
102
103
104
105
106
107

T
h

ro
u

g
h

p
u

t
(e

/
s)

Stock Market

Esper FlinkCEP SASE OpenCEP CORE

Smart Homes Taxi Trips

Experiments: Window queries

T 2T 3T 4T
101
102
103
104
105
106
107

T
h

ro
u

g
h

p
u

t
(e

/
s)

Stock Market

Esper FlinkCEP SASE OpenCEP CORE

T 2T 3T 4T

Smart Homes

T 2T 3T 4T

Taxi Trips

SELECT * FROM Dataset

WHERE A1 ; A2 ; A3

FILTER A1[filter1] AND A2[filter2] AND A3[filter3]

WITHIN X

We use time-windows size X = T, 2T, 3T, 4T.

Experiments: Window queries

T 2T 3T 4T
101
102
103
104
105
106
107

T
h

ro
u

g
h

p
u

t
(e

/
s)

Stock Market

Esper FlinkCEP SASE OpenCEP CORE

T 2T 3T 4T

Smart Homes

T 2T 3T 4T

Taxi Trips

SELECT * FROM Dataset

WHERE A1 ; A2 ; A3

FILTER A1[filter1] AND A2[filter2] AND A3[filter3]

WITHIN X

We use time-windows size X = T, 2T, 3T, 4T.

Experiments: Window queries

T 2T 3T 4T
101
102
103
104
105
106
107

T
h

ro
u

g
h

p
u

t
(e

/
s)

Stock Market

Esper FlinkCEP SASE OpenCEP CORE

T 2T 3T 4T

Smart Homes

T 2T 3T 4T

Taxi Trips

Conclusions

1. CORE is orders of magnitude faster than other systems.

2. CORE is not affected by the query or time-windows size.

Experiments: Window queries

T 2T 3T 4T
101
102
103
104
105
106
107

T
h

ro
u

g
h

p
u

t
(e

/
s)

Stock Market

Esper FlinkCEP SASE OpenCEP CORE

T 2T 3T 4T

Smart Homes

T 2T 3T 4T

Taxi Trips

Conclusions

1. CORE is orders of magnitude faster than other systems.

2. CORE is not affected by the query or time-windows size.

Experiments: Window queries

T 2T 3T 4T
101
102
103
104
105
106
107

T
h

ro
u

g
h

p
u

t
(e

/
s)

Stock Market

Esper FlinkCEP SASE OpenCEP CORE

T 2T 3T 4T

Smart Homes

T 2T 3T 4T

Taxi Trips

Conclusions

1. CORE is orders of magnitude faster than other systems.

2. CORE is not affected by the query or time-windows size.

Experiments: Window queries

T 2T 3T 4T
101
102
103
104
105
106
107

T
h

ro
u

g
h

p
u

t
(e

/
s)

Stock Market

Esper FlinkCEP SASE OpenCEP CORE

T 2T 3T 4T

Smart Homes

T 2T 3T 4T

Taxi Trips

In the paper [1], we show similar results with other query workloads

[1] M. Bucchi, A. Grez, A. Quintana, C. Riveros, and S. Vansummeren

“CORE: a Complex Event Recognition Engine”, VLDB 2022.

A logic for CER

An automaton model for CER

Evaluation algorithm

The CORE complex event recognition engine

Open questions

Outline

Time Model

Limitation: No out-of-order events

Time is implicit, given by arrival order

Crucial property for CEA evaluation:
Events arrive in timestamp order

Open question: What is the impact of out-of-order events on

Language design and expressiveness ?

Evaluation model (CEA) and complexity ?

Time Model

Limitation: No out-of-order events

Time is implicit, given by arrival order

Crucial property for CEA evaluation:
Events arrive in timestamp order

Open question: What is the impact of out-of-order events on

Language design and expressiveness ?

Evaluation model (CEA) and complexity ?

Time Model

Limitation: No out-of-order events

Time is implicit, given by arrival order

Crucial property for CEA evaluation:
Events arrive in timestamp order

Open question: What is the impact of out-of-order events on

Language design and expressiveness ?

Evaluation model (CEA) and complexity ?

Event correlation

Limitation: CORE and CEQL are based on unary CEL

Unary CEL does not allow event correlation.

. . . partially solved by PARTITION BY in CEQL for equality in limited cases.

Example: unsupported

ϕ = (B ; S) FILTER B[id] = S[id] ∧B[volume] > S[volume]

Open questions:

What is the impact of moving to k-ary predicates, k > 1 on Language expressiveness ?

What is the right computational model (à la CEA) with binary predicates ?

How does this affect complexity?

Event correlation

Limitation: CORE and CEQL are based on unary CEL

Unary CEL does not allow event correlation.

. . . partially solved by PARTITION BY in CEQL for equality in limited cases.

Example: unsupported

ϕ = (B ; S) FILTER B[id] = S[id] ∧B[volume] > S[volume]

Open questions:

What is the impact of moving to k-ary predicates, k > 1 on Language expressiveness ?

What is the right computational model (à la CEA) with binary predicates ?

How does this affect complexity?

Event correlation

Limitation: CORE and CEQL are based on unary CEL

Unary CEL does not allow event correlation.

. . . partially solved by PARTITION BY in CEQL for equality in limited cases.

Example: unsupported

ϕ = (B ; S) FILTER B[id] = S[id] ∧B[volume] > S[volume]

Open questions:

What is the impact of moving to k-ary predicates, k > 1 on Language expressiveness ?

What is the right computational model (à la CEA) with binary predicates ?

How does this affect complexity?

Event correlation

Limitation: CORE and CEQL are based on unary CEL

Unary CEL does not allow event correlation.

. . . partially solved by PARTITION BY in CEQL for equality in limited cases.

Example: unsupported

ϕ = (B ; S) FILTER B[id] = S[id] ∧B[volume] > S[volume]

Open questions:

What is the impact of moving to k-ary predicates, k > 1 on Language expressiveness ?

What is the right computational model (à la CEA) with binary predicates ?

How does this affect complexity?

Processing versus recognition

Limitation: CORE, CEQL, and CEL focus on complex event recognition

Other features in the literature that focus on processing of complex events are not supported:

aggregation

integration of non-event data sources

parallel or distributed execution

Open questions:

What is the right language for CER + aggregation?

What is the right computational model (à la CEA) in the presence of aggregation?

How does aggregation affect evaluation complexity?

Processing versus recognition

Limitation: CORE, CEQL, and CEL focus on complex event recognition

Other features in the literature that focus on processing of complex events are not supported:

aggregation

integration of non-event data sources

parallel or distributed execution

Open questions:

What is the right language for CER + aggregation?

What is the right computational model (à la CEA) in the presence of aggregation?

How does aggregation affect evaluation complexity?

Processing versus recognition

Limitation: CORE, CEQL, and CEL focus on complex event recognition

Other features in the literature that focus on processing of complex events are not supported:

aggregation

integration of non-event data sources

parallel or distributed execution

Open questions:

What is the right language for CER + aggregation?

What is the right computational model (à la CEA) in the presence of aggregation?

How does aggregation affect evaluation complexity?

Getting to the CORE
of Complex Event Recognition

Stijn Vansummeren

UHasselt, Data Science Institute

	A logic for CER
	An automaton model for CER
	Evaluation algorithm
	The CORE complex event recognition engine
	Open questions

