Linear Temporal Logic: From Infinite to Finite Horizon

Moshe Y. Vardi

Rice University

Reactive Systems

Reactivity: Ongoing interaction with environment (Harel+Pnueli, 1985), e.g., hardware, operating systems, communication protocols, robots, etc. (also, *open systems*).

Example: Printer specification – J_i - job *i* submitted, P_i - job *i* printing.

- *Safety*: two jobs are not printing together
- Liveness: every jobs is eventually printed

Crux: Behavioral requirements over infinite traces rather than input/output requirements

Temporal Logic

Linear Temporal logic (LTL): logic of temporal sequences (Pnueli, 1977) – *Main feature*: time is implicit

- *next* φ : φ holds in the next state.
- eventually φ : φ holds eventually
- always φ : φ holds from now on
- φ until ψ : φ holds until ψ holds.

Semantics: over infinite traces (non-termination)

•
$$\pi, w \models next \varphi \text{ if } w \bullet __{\varphi} \bullet$$

Examples

- always not (CS₁ and CS₂): mutual exclusion (safety)
- always (Request implies eventually Grant): liveness
- always (Request implies (Request until (¬Request∨ Grant))): liveness
- always ((always eventually Request) implies eventually Grant): liveness

Printer

Example: Printer specification – J_i - job *i* submitted, P_i - job *i* printing.

- Safety: two jobs are not printing together always $\neg(P_1 \land P_2)$
- Liveness: every jobs is eventually printed always $\bigwedge_{i=1}^{2} (J_i \to eventually P_i)$

Verification

Model Checking:

- Given: Program P, Specification φ .
- Task: Check that P satisfies φ
- Algorithmic methods: temporal specifications and finite-state programs.
- Also: Certain classes of infinite-state programs
- Tools: SMV, SPIN, SLAM, etc.
- *Impact* on industrial design practice is increasing.

Challenges:

- Designing *P* is hard and expensive.
- Redesigning P when P does not satisfy φ is hard and expensive.

Automated Design

Basic Idea:

- Start from spec φ , design P s.t. P satisfies φ . *Advantage*: No verification, no re-design
- Derive P from φ algorithmically. *Advantage*: No design

In essenece: Declarative programming taken to the limit.

Harel, 2008: "Can Programming be Liberated, Period?"

Program Synthesis

The Basic Idea: "Mechanical translation of human-understandable task specifications to a program that is known to meet the specifications."

Deductive Approach (Green, 1969, Waldinger and Lee, 1969, Manna and Waldinger, 1980): Prove *realizability* of function, e.g., $(\forall x)(\exists y)(Pre(x) \rightarrow Post(x, y))$; Extract *program* from realizability proof.

Classical vs. Temporal Synthesis:

- *Classical*: Synthesize input/output programs
- *Temporal*: Synthesize programs for *ongoing computations* (of reactive systems)

Synthesis of Ongoing Programs

Spec: Temporal logic formulas

Early 1980s: Satisfiability approach (Wolper, Clarke+Emerson, 1981)

- Given: φ
- Satisfiability: Construct model M of φ
- Synthesis: Extract P from M.

Example: always $(odd \rightarrow next \neg odd) \land$ always $(\neg odd \rightarrow next \ odd)$



Satisfiability and Synthesis

- **Print-Server Specification Satisfiable?** Yes!
- **Model** M: A single state where J_1 , J_2 , P_1 , and P_2 are all false.

Extract program from *M***?** No!

Why? Because M handles only one input sequence.

- J_1, J_2 : input variables, controlled by environment
- P_1, P_2 : output variables, controlled by system

Desired: a system that handles *all* input sequences.

Conclusion: Satisfiability is *inadequate* for synthesis.

Realizability

I: input variables, *O*: output variables

Game: System: choose from 2^O , Env: choose from 2^I

Infinite Play: (i_0, o_0) , (i_1, o_1) , (i_2, o_2) , ...

Win: Behavior satisfies spec $\varphi(I, O)$

Strategy: Function $f : (2^I)^* \to 2^O$

Realizability:[Abadi+Lamport+Wolper,1989Pnueli+Rosner,1989a]:Existence of winning strategy forspecification.

Desideratum: A *universal* plan! Why: Autonomy!

Church's Problem

Church, 1957: Realizability problem wrt specification expressed in MSO (monadic second-order theory of one successor function)

Büchi+Landweber, 1969:

- Realizability is decidable.
- If a winning strategy exists, then a *finite-state* winning strategy exists.
- Realizability algorithm *produces* finite-state strategy *synthesis*.

Rabin, 1972: Simpler solution via Rabin tree automata.

Question: LTL is subsumed by MSO, so what did Pnueli and Rosner do? Answer: better algorithms!

Strategy Trees

Infinite Tree: D^* (*D* - directions)

• Root: ε ; $x \in D^* \Rightarrow$ Children: xd, $d \in D$

Labeled Infinite Tree: $\tau: D^* \to \Sigma$

Strategy: $f : (2^I)^* \to 2^O$

Rabin's insight: A strategy is a labeled tree with directions $D = 2^{I}$ and alphabet $\Sigma = 2^{O}$.

Rabin, 1972: Finite-state automata on infinite trees

Emptiness of Tree Automata

Emptiness: $L(A) = \emptyset$

Emptiness of Automata on Finite Trees: PTIME test (Doner, 1965)

Emptiness of Rabin Automata on Infinite Trees: Difficult

- Rabin, 1969: non-elementary
- Hossley+Rackoff, 1972: 2EXPTIME
- Rabin, 1972: EXPTIME
- Emerson, V.+Stockmeyer, 1985: In NP
- Emerson+Jutla, 1991: NP-complete

Rabin's Realizability Algorithm

 $REAL(\varphi)$:

- Construct Rabin tree automaton A_{φ} that accepts all winning strategy trees for spec φ .
- Check non-emptiness of A_{φ} .
- If nonempty, then we have realizability; extract strategy from nonemptiness witness.

Complexity: non-elementary

Reason: A_{φ} is of non-elementary size for spec φ in MSO.

Post-1972 Developments

- Pnueli, 1977: Use LTL rather than MSO as spec language.
- V.+Wolper, 1983: Elementary (exponential) translation from LTL to automata.
- Safra, 1988: Doubly exponential construction of tree automata for strategy trees wrt LTL spec (using V.+Wolper).
- Rosner+Pnueli, 1989: 2EXPTIME realizability algorithm wrt LTL spec (using Safra).
- Rosner, 1990: Realizability is 2EXPTIME-complete.

Standard Critique

Impractical! 2EXPTIME is a horrible complexity.

Response:

- 2EXPTIME is just worst-case complexity.
- 2EXPTIME lower bound implies a doubly exponential bound on the size of the smallest strategy; thus, hand design cannot do better in the worst case.

2EXPTIME: Need not be an insurmountable problem, but algorithmics is *very challenging*!

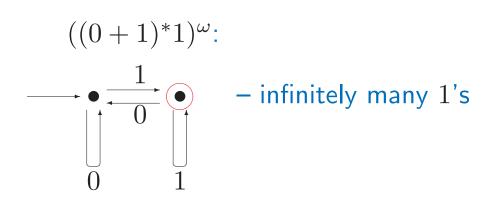
Automata on Infinite Words

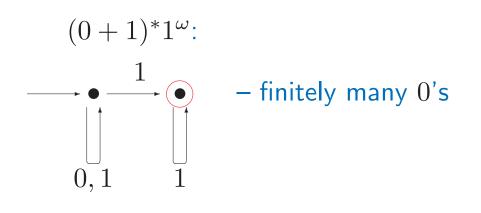
Nondeterministic Büchi Automaton on Words (NBW) $A = (\Sigma, S, s_0, \rho, F)$ • Alphabet: Σ • States: S• Initial state: $s_0 \in S$ • Transition function: $\rho : S \times \Sigma \rightarrow 2^S$ • Accepting states: $F \subseteq S$

Input word: a_0, a_1, \ldots Run: $s_0, s_1, \ldots - s_{i+1} \in \rho(s_i, a_i)$ for $i \ge 0$ Acceptance: F visited infinitely often

Motivation: (1) characterizes ω -*regular* languages; (2) equally expressive to MSO (Büchi 1962); (3) more expressive than LTL

Examples





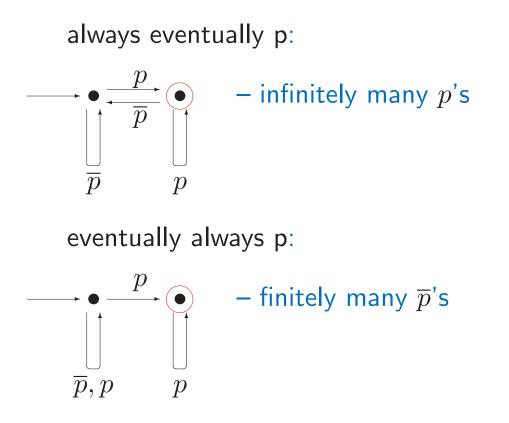
Temporal Logic vs. Büchi Automata

Paradigm: Compile high-level logical specifications into low-level finitestate language

The Compilation Theorem: V.-Wolper, 1983

Given an LTL formula φ , one can construct an NBW A_{φ} such that a computation σ satisfies φ if and only if σ is accepted by A_{φ} . Furthermore, the size of A_{φ} is at most exponential in the length of φ .

Temporal Logic vs. Büchi Automata: Examples



Realizability Games

NBW Games:

- S choose output value $a \in \Sigma$
- E choose input value $b \in \Delta$
- *Round*: *S* and *E* set their variables
- *Play*: infinite word in $(\Sigma \times \Delta)^{\omega}$
- Specification: NBW A over the alphabet $\Sigma\times\Delta$
- S wins when infinite play is accepted by by A.

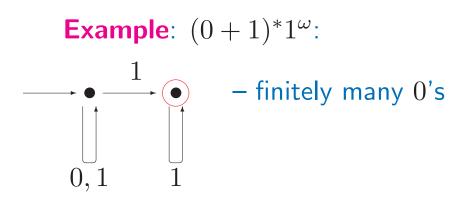
A Mismatch:

- Nondeterministic automata have "foresight".
- Strategies do not have foresight.

Solution: Determinize A

Determinization

Key Fact (Landweber, 1969): Nondeterministic Büchi automata are more expressive than deterministic Büchi automata.



McNaughton, 1966: NBW can be determinized using more general acceptance condition – blow-up is *doubly exponential*.

Parity Automata

Deterministic Parity Automata (DPW)
A = (Σ, S, s₀, ρ, F)
F = (F₁, F₂,..., F_k) - partition of S.
Parity index: k
Acceptance: Least i such that F_i is visited infinitely often is even.

Safra, 1988: NBW with n states can be translated to DPW with $n^{O(n)}$ states and parity index O(n).

Parity Games

Game Graphs: $G = (V_0, V_1, E, v_s, W)$

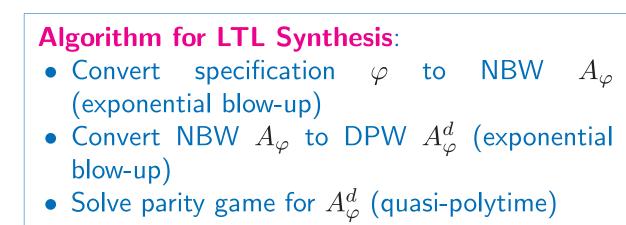
- $E \subseteq (V_0 \times V_1) \cup (V_1 \times V_0)$
- v_s : start node
- $W \subseteq V_0 \cup V_1$: winning set
- Player 0 moves from V_0 , Player 1 moves from V_1 .
- $\mathcal{W} = (W_1, W_2, \dots, W_k)$ partition of $V_0 \cup V_1$
- Play 0 wins: least i such that W_i is visited infinitely often is even.

Solving Parity Games:

• Calude et al., 2017: Quasi-PTIME

Open Question: In PTIME?

LTL Synthesis



Pnueli-Rosner, 1989: LTL realizability/synthesis is 2EXPTIME-complete.

• *Transducer*: finite-state program with doubly exponentially many states

Theory, Experiment, and Practice

Automata-Theoretic Approach in Practice:

- Mona: MSO on finite words
- Linear-Time Model Checking: LTL on infinite words

Experiments with Automata-Theoretic Approach:

- Symbolic decision procedure for CTL (Marrero 2005)
- Symbolic synthesis using NBT (Wallmeier-Hütten-Thomas 2003)

LTL Synthesis

Why LTL synthesis is so hard?

- NBW determinization is hard in practice: from 9-state NBW to 1,059,057-state DRW (Althoff-Thomas-Wallmeier 2005)
- NBW determinization is hard in practice: no symbolic algorithms
- Parity games are hard in practice!

Esparza-Kretnsky-Sickert, 2020: Direct translation from LTL to ω -automata – but still hard!

Solution: General Reactivity (1)

Piterman-Pnueli-Sa'ar,2006:LimitLTLspecification:(AlwaysEventually P) \rightarrow (AlwaysEventually Q)

Pros:

- Cubic game solvability (wrt game size)
- Tools, e.g., *Slugs*
- Broad applicability popular in robotics

Cons: low expressiveness!

A New Approach: Finite-Horizon Reasoning

De Giacomo–V., 2013: LTL_f – LTL on finite traces

Example: Always Eventually p - p holds at final state of trace.

Motivation: Al planning, robot task-motion planning, business processes **Remark**: Note popularity of *Co-safe* LTL.

Cons: 2EXPTIME-complete, **Pros**: Easier algorithmics

Classical AI Planning

Deterministic Finite Automaton (DFA)

- $A = (\Sigma, S, s_0, \rho, F)$
- Alphabet: Σ
- States: S
- Initial state: $s_0 \in S$
- Transition function: $\rho: S \times \Sigma \to S$
- Accepting states: $F \subseteq S$

Input word: $a_0, a_1, ..., a_{n-1}$ Run: $s_0, s_1, ..., s_n$

• $s_{i+1} = \rho(s_i, a_i)$ for $i \ge 0$; Acceptance: $s_n \in F$.

Planning Problem: Find word leading from s_0 to F.

• Realizability: $L(A) \neq \emptyset$; Program: $w \in L(A)$

Reachability Games

Game Graphs: $G = (V_0, V_1, E, v_s, W)$ • $E \subseteq (V_0 \times V_1) \cup (V_1 \times V_0)$ • v_s : start node • $W \subseteq V_0 \cup V_1$: winning set • Player 0 moves from V_0 , Player 1 moves from V_1 . • Player 0 wins: reach W.

Fact: Reachability games can be solved in *linear time* –least fixpoint algorithm

Universal Planning

DFA Games:

- S choose output value $a \in \Sigma$; E choose input value $b \in \Delta$
- Round: S and E set their values
- *Play*: word in $(\Sigma \times \Delta)^*$
- Specification: DFA A over the alphabet $\Sigma\times\Delta$
- S wins when play is accepted by by A.

Realizability and Synthesis: Strategy for $S - \tau : \Delta^* \to \Sigma$

- Realizability exists winning strategy for S
- *Synthesis* obtain such winning strategy.

Solving DFA Games

$$A = (\Sigma \times \Delta, S, s_0, \rho, F)$$

Define $win_i(A) \subseteq S$ inductively:
• $win_0(A) = F$
• $win_{i+1}(A) = win_i(A) \cup$
{ $s : (\exists a \in \Sigma)(\forall b \in \Delta)\rho(s, (a, b)) \in win_i(A)$ }
Lemma: S wins the A game iff $s_0 \in win_{\infty}(A)$.

Bottom Line: *linear-time*, least-fixpoint algorithm for DFA realizability. What about synthesis?

Transducers

Transducer: a finite-state representation of a strategy- deterministic automaton with output $T = (\Delta, \Sigma, Q, q_0, \alpha, \beta)$ • Δ : input alphabet • Σ : output alphabet • Q: states • q_0 : initial state • $\alpha : S \times \Delta \rightarrow S$: transition function • $\beta : S \rightarrow \Sigma$: output function

Key Observation: A transducer representing a winning strategy can be extracted from $win_0(A), win_1(A), \ldots$

Algorithmic Ideas

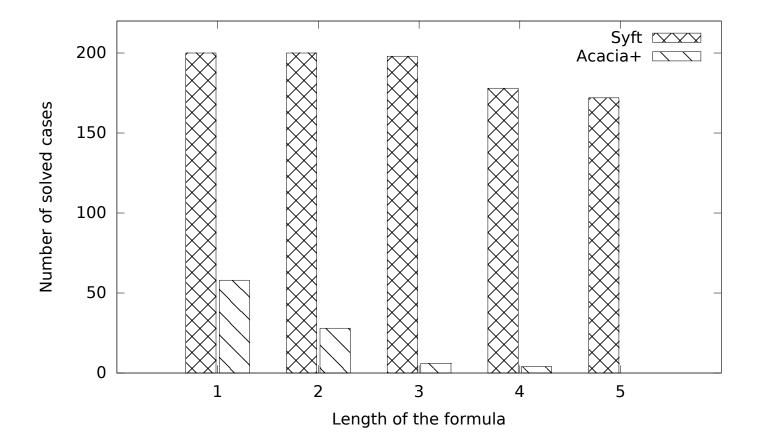
Observations

- If φ is an LTL_f formula, then it can be translated to DFA [De Giacomo+V., 2013].
- Solve DFA games for realizability and synthesis.

Implementation [Zhu-Tabajara-Li-Pu-V., 2017]:

- Translate φ to FOL, and use MONA to translate to BDD-based *Symbolic DFA*.
- Solve DFA game symbolically
- Open Tool: *Syft*

Performance Comparison



Discussion

Question: Can we hope to reduce a 2EXPTIME-complete approach to practice?

Answer:

- Worst-case analysis is pessimistic.
 - Mona solves nonelementary problems.
 - SAT-solvers solve huge NP-complete problems.
 - Model checkers solve PSPACE-complete problems.
 - We need algorithms that blow up only on hard instances!
 - More algorithmic research needed!
- **Question** Can "DFA Technology" be used beyond LTL_f?

Application: Safety LTL

Normal Form for Safety Temporal Properties:Zhu-Tabajara-Li-Pu-V.,2017:Specification: No Until or Eventually

Example: Replace $Always(Snd \rightarrow EventuallyRcv)$ by $Always(Snd \rightarrow NextNextNextRcv)$

Pros:

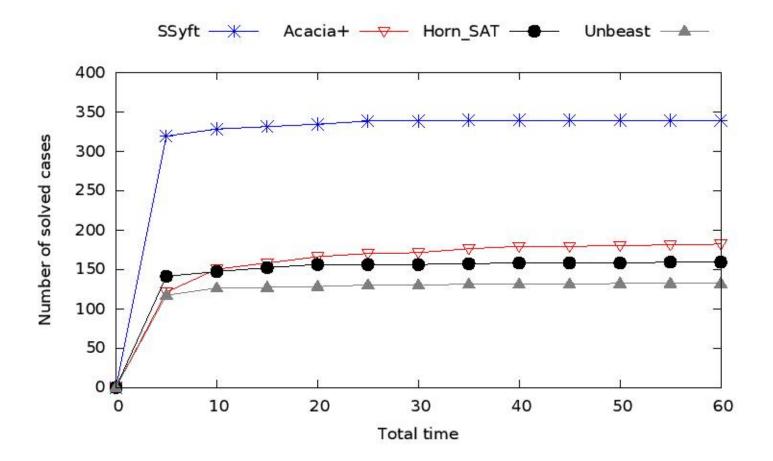
- Linear game solvability (wrt game size)
- Tools, e.g., *Ssyft*

Algorithmic Ideas

Observations

- If φ is a Safety LTL formula, then ¬φ is a co-safety formula, which can be translated to DFA [Kupferman+V., 2000].
- Solve for adversary in DFA game.
- Translate $\neg \varphi$ to FOL, and use MONA to translate to BDD-based Symbolic DFA.
- Solve DFA game symbolically.

Performance Comparison



Best of all Possible Worlds

Two success stories in temporal synthesis

- GR(1)
- Finite-horizon synthesis

Question: Can the two approaches be combined?

Comment: Finite-horizon goals may require infinite-horizon assumptions, e.g., *EventuallyReceived* may require *AlwaysEventuallyChannelUp*.

De Giacomo, Di Stasio, Tabajara, V., S. Zhu, IJCAI'21: *Finite-Trace and Generalized-Reactivity Specifications in Temporal Synthesis* – use finite-horizon techniques to construct game arena and solve GR(1) games on that arena – *outperforms LTL synthesis*

In Conclusion

The Siren Song of Temporal Synthesis

- LTL Synthesis: a seductive idea
- But: horrible complexity and challenging algorithmics

Conclusion: high price for infinite-horizon semantics

Life Wisdom: You can run further by running slower. Time to consider finite-horizon temporal reasoning!